Разбираемся, что такое детонация и как ее победить
Разбираемся, что такое детонация и как ее победить?
Что позволяет современным бензиновым двигателям работать без особых проблем на топливе с разным октановым числом? Откуда такая всеядность — и почему нынешние двигатели почти равнодушны к детонации?
Д етонация стала самым страшным врагом инженеров сразу после изобретения двигателя внутреннего сгорания в XIX веке. Для большей отдачи увеличивали степень сжатия, вслед за которой росли давление и температура смеси в цилиндре в конце такта сжатия, — и после подачи искры топливовоздушная смесь детонировала. То есть воспламенялась практически мгновенно по всему объему камеры сгорания: этакий мини-взрыв, разрушающий детали двигателя.
Проблему усугубило появление наддува: сперва на авиационных моторах (в годы Первой мировой войны), а затем и на автомобильных. Чем выше давление в цилиндре, тем больше мощность — но и склонность к детонации тоже возрастает. Конструкторам пришлось уменьшать степень сжатия и применять высокооктановый бензин, но этого было недостаточно.
Оставалось регулировать угол опережения зажигания. Ведь чем позже проскакивает искра, тем медленнее растет давление в цилиндре, да и его пик меньше — а значит, снижается вероятность детонации.
Но вот незадача: мощность двигателя при этом тоже уменьшается. Так что в предельных режимах — например, на взлете, когда необходима максимальная отдача, — с детонацией боролись… с помощью обычной воды! Ее впрыскивали во впускной коллектор, она испарялась в камере сгорания, снижая температуру топливовоздушной смеси, — и предотвращала детонацию.
Тем временем химики тоже не сидели без дела. В 1921 году сотрудники компании General Motors Чарльз Кеттеринг и Томас Мидгли обнаружили, что добавление химического соединения под названием тетраэтилсвинец в бензин существенно повышает его антидетонационную стойкость — иными словами, увеличивает октановое число. Через пару лет в GM вместе с компанией DuPont наладили промышленное производство этой добавки к бензину под маркой Этил — намеренно не упоминая слова «свинец». Ведь этот тяжелый металл вызывает опасные отравления.
Экологи начали бить тревогу с конца 60-х годов, а в 1973 году в американском Агентстве по защите окружающей среды (EPA) подготовили первый акт о запрете этилированного топлива. Но его дешевизна и усилия лоббистов химической и автомобильной промышленности были настолько велики, что заметно уменьшить использование тетраэтилсвинца в Штатах удалось только к началу 90-х. Помогло то, что тетраэтилсвинец «отравлял» каталитическое покрытие сот нейтрализаторов и препятствовал их внедрению в качестве систем очистки отработавших газов.
В конце концов тетраэтилсвинец запретили. В США — с 1996 года, в Евросоюзе — с 2000. У нас этилированный бензин нельзя производить и распространять с 2003 года. К сожалению, в слаборазвитых государствах, таких, как Алжир, Ирак, Северная Корея и Афганистан, это ядовитое топливо все еще в ходу.
Да и не был этилированный бензин панацеей — двигателисты не оставляли попыток придумать иное средство для борьбы с детонацией. Например, на купе Oldsmobile F-85 Jetfire 1962 года турбомотор (!) V8 3.5 мощностью 218 л.с. с высокой даже по нынешним меркам степенью сжатия 10,25:1 был оснащен системой впрыска смеси воды и метанола! Спирт был нужен, для того чтобы защитить систему от замерзания в холодное время года. В 1978 году аналогичный впрыск воды применила и шведская компания Saab, выпустившая ограниченной серией трехдверку 99 Turbo S.
Но эти модели были настоящим эксклюзивом, а большинство автолюбителей в 60-е и 70-е годы боролись с детонацией самостоятельно.
Детонация двигателя: откуда она берется, чем опасна и как с ней бороться
Многие полагают, что современному двигателю, обвешанному датчиками, никакие детонации не страшны: электроника всё вытянет.Но это, к сожалению, не так.
Нажимаете на педаль газа и тут же слышите звонкие постукивания в моторе? Это она и есть – детонация. И не нужно повторять «эксперимент» раз за разом – плохо может кончиться.
Что это такое?
Детонация – это взрывообразное изменение параметров бензовоздушной смеси, заменяющее собой спокойное горение. Резко растет давление, возникает ударная волна, подскакивает температура. При этом появляются новые очаги самовоспламенения смеси. А когда ударная волна добирается до поверхности камеры сгорания, как раз и появляется упомянутый выше характерный стук.
В правильно отрегулированном моторе сгорание смеси завершается на грани детонации. Но стоит ее перешагнуть, как двигатель может отправиться на капремонт, а то и на свалку. Мотор, работающий с сильной детонацией на больших нагрузочных режимах, выходит из строя за считанные минуты. При этом опасность исходит как от механических нагрузок, так и от сильного перегрева деталей. Как правило, страдают поршни: теплоотвода у них нет, а температура плавления материала, из которого они изготовлены, относительно невысокая. Рушатся перегородки между поршневыми кольцами, трескаются тарелки клапанов, прогорает прокладка головки блока цилиндров, разрушаются поршневые пальцы и шатунные вкладыши.
Кто виноват?
Основная причина, о которой говорят еще с жигулевских времен, это бензин с октановым числом ниже рекомендованного. Удивляться нечему: ведь октановое число – это главная характеристика антидетонационной стойкости бензина. В прошедшие времена жигулевские моторы страдали от бездумного применения бензина А-76 вместо АИ-93: его доставали по дешевке и не думали о последствиях. Сегодня многие владельцы также выискивают топливо подешевле, выбирая АЗС с привлекательными ценниками и заливая 92-й вместо 95-го.
Другая распространенная причина возникновения детонации – плохое состояние двигателя. Накопившийся после зимы нагар, моторное масло в камере сгорания – всё это провоцирует неконтролируемое воспламенение смеси. Кроме того, возникновению детонации могут способствовать неудачно проведенный тюнинг или ремонт мотора, вследствие которых степень сжатия становится выше расчетной. Наконец, неумелые попытки снизить расход бензина при движении в натяг на небольших скоростях также могут привести к нежелательным последствиям
Как избежать?
Современные моторы оснащены датчиками детонации, сигналы которых заставляют контроллер, в частности, менять угол опережения зажигания в сторону более позднего. Но эти датчики не всесильны, они работают в узком диапазоне, а потому на каком-нибудь 66-м бензине машина все равно нормально не поедет. К тому же глушить мотор даже при сильной детонации они не будут: это небезопасно. Вдруг, например, вы идете на обгон по встречке, а вам уже сигналят фарами: ты чего, мол? В таких ситуациях глушить мотор никак нельзя: машина должна оставаться управляемой. Поэтому он будет продолжать работать даже с сильной детонацией, а это, как уже отмечалось, очень опасно для его «здоровья».
Советы, как водится, довольно простые. Главное – никогда специально не заправляться бензином с пониженным октановым числом. Разработчик мотора всегда учитывает возможность кратковременных отклонений от нормы по октану, а потому несколько единичек отклонения мотор переживет. Но если, к примеру, заливать тот же 92-й вместо 95-го постоянно, то вместо него однажды можно нарваться, скажем, на какой-нибудь 88-й. А это – приговор двигателю.
При возникновении детонации надо сразу же забыть про любые резкие ускорения. Чтобы исключить подозрения на негодный бензин, желательно сразу же разбавить его чем-то заведомо пригодным, причем можно даже залить даже 98-й. Если детонация исчезнет, то виновник ясен. Если нет – не откладывайте визит на сервис.
К чему приводит детонация двигателя
Процесс, при котором происходит неконтролируемое самовозгорание топливовоздушной смеси в цилиндрах, называется детонация двигателя. Данный дефект является взрывом, он производит разрушительные действия на узлы и детали силовых агрегатов любого вида. В физическом смысле детонация представляет из себя разрушительную взрывную волну, созданную при избыточном давлении и сверхвысокой температуре топлива.
Описание детонации и ее последствий
Во время разгона автомобиля водитель давит на педаль акселератора, топливная смесь, попадая в цилиндры, испытывает воздействие очень высокого давления и температуры. Давление возрастает от перемещения поршня вверх и возгорания топлива от свечи накаливания. Пламя, расползаясь по камере сгорания, генерирует добавочное давление.
Под воздействием сверхвысокой температуры и возросшего давления остатки горючей смеси самовоспламеняются, создавая одну за другой взрывные волны со стремительным возрастанием амплитуды.
Возникает эффект неконтролируемой цепной реакции, в ходе которой пламя на огромной скорости давит на гильзу, обороты двигателя растут до бесконечности — движок идет вразнос, раскручиваясь самопроизвольно. Такую ситуацию трудно взять под контроль.
Последствия детонации двигателя выражены появлением следующих поломок:
- Срыв кромок поршней.
- Повреждение стенок цилиндров.
- Разрыв прокладки головки цилиндров.
- Поломка датчика дроссельной заслонки.
При стабильной работе мотора происходит равномерное сгорание топливной смеси с последующей передачей энергии на поршни.
Причины возникновения детонации при включении мотора на холодную
Детонация при запуске двигателя возникает при поступлении в один или несколько цилиндров обедненных топливовоздушных смесей. Причиной обеднения смеси является засоренность специальных распылителей — форсунок.
При появлении засоров, нарушается расчетная величина объема подаваемого топлива. Чтобы установить причину появления засорения, необходимо произвести проверку фильтра грубой очистки, а также фильтров каждой форсунки.
Холодный мотор после прогрева часто восстанавливает свою работу, и детонация двигателя прекращается.
Корректировка работы двигателя при помощи электронного управления
Электронный блок управления (ЭБУ), установленный в автомобилях с инжекторным двигателем, регулирует параметры топливной смеси. При помощи ЭБУ производится коррекция угла опережения зажигания с вынужденным снижением объема впрыскиваемой топливной смеси.
Причины детонации частично исчезают, но в результате подобного регулирования мощность силового агрегата существенно снижается. При высоком уровне засоренности форсунок ЭБУ не всегда может осуществлять компенсирующие функции.
Детонация мотора после прогрева
Причины детонации прогретого мотора:
- поломан датчик заслонки;
- использование топлива, имеющего низкое октановое число;
- неисправность и засор форсунок.
После восстановления или замены датчика заслонки двигатель готов к эксплуатации на любых, в том числе и на повышенных режимах. Узнать, есть ли детонация двигателя, причины ее возникновения на прогретом моторе, можно только под нагрузкой при включенной передаче.
Низкое качество топлива, пониженное значение его октанового числа является одной из основных причин, которые способствуют повышению температуры в камере сгорания и увеличению давления в топливных цилиндрах, приводящих к возникновению взрывов.
Чем выше данный показатель топлива, тем лучше оно противостоит самовоспламенению и детонации. Высокое значение октанового числа бензина — это антидетонационный индекс.
Влияние качества топлива и свечей зажигания
Детонация двигателя также может быть вызвана нарушением хрупкого баланса между двумя факторами:
- качество свеч зажигания;
- сила сжатия топлива.
Применение неверно подобранных свечей зажигания, может явиться причиной возникновения детонации в двигателе. Назначение данных приборов состоит в контроле внутренней среды двигателя, от точности срабатывания свечей зависит своевременность и качество сгорания топлива.
При нарушении режима сжигания топлива происходит наращивание температуры в камере сгорания и перегреву элементов силового агрегата, приводящее к детонации. Чтобы устранить появившийся дефект, необходимо сменить имеющиеся свечи зажигания на другой рекомендуемый вид.
Недостаточное сжатие топлива в цилиндрах приводит к неполному сгоранию смеси и прилипанию оставшихся компонентов к стенкам цилиндров в виде нагара. В зависимости от качества бензина и уровня очистки топлива происходит образование отложений нагара, что существенно уменьшает объем цилиндра и вызывает детонацию.
Для уничтожения вредных отложений применяются специальные присадки или производится замена марки топлива на другую.
Устранение детонации мотора
На появление детонации инжекторного двигателя влияют следующие параметры:
- Угол опережения зажигания.
- Обеднение топливной смеси.
Многих автовладельцев интересует, как устранить детонацию двигателя своими руками. Для того чтобы избавиться от взрывного горения горючих смесей, умельцы часто используют следующие приемы:
- Эксплуатация движка на более высоких передачах. При работе на высокой скорости сокращается время сгорания топлива на фоне максимального давления. Разгон автомобиля приводит к снижению вероятности появления детонации.
- Замена свечей зажигания.
- Увеличение влажности воздуха. Более влажный воздух существенно снижает температуру в камере сгорания.
- Использование охладителя воздуха интеркулера для снижения температуры воздуха перед нагнетанием его в цилиндры.
- Замена бензина на топливо, имеющее более высокое октановое число.
- Перемещение трамблера для изменения угла опережения зажигания в сторону уменьшения для стабильной работы карбюраторного двигателя на холостых оборотах.
- Торможение двигателя для опережения момента зажигания.
Применение метода корректировки положения трамблера используется на короткое время, чтобы добраться до ближайшей автозаправки и сменить топливо на более высокооктановый бензин. После этого трамблер необходимо установить в прежнее положение для обеспечения оптимального значения угла опережения.
Бывают случаи, когда автовладельцы осознанно производят корректировку угла опережения зажигания в сторону увеличения, обедняя горючую смесь. В результате происходит повышение динамических характеристик автомобиля, увеличивается крутящий момент. При проведении данной операции существенно возрастает вероятность появления детонации двигателя.
Устранение или уменьшение детонации двигателя является сложной задачей. Чтобы выявить настоящую причину возникновения взрывов внутри мотора, необходимо тщательно изучить принцип работы силового агрегата и понять, что способствует их появлению.
Признаки появления детонации движка
В результате ударных нагрузок, возникающих при взрывах, появляются характерные звуки в виде звонкого стука, изменяется состав и цвет выхлопных газов, детали двигателя получают серьезные дефекты. Кроме ярких шумовых эффектов, имеются внешние признаки появления детонации:
- кратковременный выход черного дыма из выхлопной трубы;
- уменьшение температуры отработавших газов;
- кратковременная потеря мощности двигателя;
- потеря управления работой двигателя вследствие ее неустойчивости;
- критический перегрев элементов движка.
Элементы, входящие в состав силового агрегата, изготовлены с расчетом на работу при определенных значениях температуры и давления. Ударные нагрузки, возникающие при детонации, превышают все допустимые значения.
Детонационный эффект является наиболее опасным для транспортного средства. Он может возникнуть при неравномерном распределении воздуха и топлива внутри цилиндров, что приводит к внезапным неконтролируемым взрывам.
Для своевременного выявления данного дефекта нужно регулярно контролировать появление посторонних звуков и постукиваний, исходящих со стороны силового агрегата транспортного средства. Именно источники этих звонких сигналов нужно выявить и немедленно убрать причину их возникновения.
Детонация является потенциальной опасностью для движка, поэтому ее нужно постоянно держать под контролем. Она не должна присутствовать при нормальной работе двигателя. Даже небольшой шум в двигателе необходимо постоянно исследовать и убирать причины, вызвавшие его.
Принцип работы автомобиля
Работа двигателя. Процессы горения и передачи тепла
У бензиновых двигателей после прохождения поршнем ВМТ давление и температура в цилиндре за счет сгорания топливо-воздушной смеси достигают максимума — давления порядка 3-6 МПа и температуры свыше 2500 К. Весь процесс сгорания происходит вблизи ВМТ, длится 4060° угла поворота коленчатого вала (ПКВ), объем камеры сгорания при этом изменяется мало. Именно поэтому бензиновые двигатели с искровым зажиганием в литературе называют иногда двигателями с подводом тепла при постоянном объеме или двигателями Отто (работающими по циклу Отто).
Для дизелей условно принимают, что часть теплоты подводится при постоянном объеме, а часть — при постоянном давлении. Поскольку у дизелей степень сжатия существенно выше, чем у бензиновых двигателей (е = 21-22), то максимальное давление при сгорании также выше и достигает 5,5 МПа. При этом температура газов в цилиндре меньше и, как правило, не превышает 2000—5-2200 К.
Процесс сгорания топливо-воздушной смеси в двигателе очень сложен и до конца не изучен. При горении происходят химические реакции с выделением тепла и образованием продуктов сгорания. Процесс горения существенно зависит от большого числа физических явлений в цилиндре: от геометрии (формы) камеры сгорания до состава, скорости и направления движения смеси в цилиндре в данный момент времени в данной точке.
Для осуществления процесса горения необходимо, чтобы количество топлива, подаваемого в цилиндр, строго соответствовало количеству воздуха, поступающего в цилиндр на такте впуска. Соотношение количеств воздуха и топлива в смеси определяется коэффициентом избытка воздуха. где 15 — постоянный (стехиометрический) коэффициент для данного топлива — теоретически необходимое количество воздуха (кг) для полного сгорания 1 кг топлива. При а = 1, когда количество топлива точно соответствует количеству воздуха, необходимому для полного сгорания этого топлива, состав смеси называют стехиометрическим.
При сгорании коэффициент избытка воздуха а смеси для бензиновых двигателей традиционных конструкций должен находиться в интервале от 0,70-0,75 до 1,05-1,15 в зависимости от режимов работы двигателя. Для этого система питания двигателя должна строго дозировать топливо. Например, при разгоне целесообразно иметь, а меньше 1 («богатая» смесь и большой крутящий момент), в то время как для установившегося режима движения автомобиля желательно, чтобы а было близко к 1 (нормальная или слегка обедненная смесь, высокая экономичность, а также приемлемая токсичность отработавших газов).
Для воспламенения и горения смеси у двигателей традиционных схем необходимо, чтобы топливо хорошо испарилось и перемешалось с воздухом еще на также сжатия, т. е. перед искровым разрядом. Это достигается внешним смесеобразованием, т. е. подачей топлива заранее во впускной трубопровод (с помощью карбюратора или форсунок системы впрыска). При этом топливо успевает практически полностью испариться перед воспламенением. После воспламенения смеси искровым разрядом образуется фронт пламени, распространяющийся по объему камеры сгорания.
Коэффициент избытка воздуха а существенно влияет не только на экономичность и мощность, но и на состав отработавших газов. Например, если основная часть продуктов сгорания — это углекислый газ СО2 и водяные пары Н20, то при работе на богатых смесях двигатель выделяет повышенное количество оксида углерода СО, а также несгоревшие углеводороды CnHm (СН). На некоторых режимах продукты сгорания содержат также повышенное количество оксидов азота NOx, что особенно характерно для двигателей с высокой степенью сжатия (оксиды азота образуются при высоких температурах).
Очень важное значение для состава отработавших газов имеет конструкция головки блока двигателя и особенно камеры сгорания — пространства между головкой и днищем поршня. От того, как организовано движение смеси по камере сгорания перед и во время сгорания, сильно зависит количество вредных выбросов типа СО, NOx и СН.
В конечном счете, все указанные факторы влияют и на количество выделившегося при сгорания тепла — чем оно больше, тем выше основные параметры двигателя. Например, двигатель, имеющий на определенном режиме большое количество СО и несгоревших углеводородов СН в отработавших газах, вряд ли обеспечит на этом режиме хорошую мощность или экономичность. С другой стороны, сгорание должно также происходить в строго определенной фазе цикла — слишком раннее или позднее сгорание приводит к уменьшению давления в цилиндре и, в конечном счете, к ухудшению основных параметров двигателя.
При сгорании в цилиндре выделяется большое количество тепла. Часть его уходит с отработавшими газами, другая часть передается в стенки головки и гильзу цилиндра, в поршень. Если бы конструкция поршня не позволяла отводить тепло от днища, то поршень очень быстро бы расплавился и прогорел. В самом деле, температура газа в камере сгорания превышает 1800-2000°С, в то время как рабочая температура деталей из алюминиевого сплава не должна быть больше 300-350°С. Для работы в таких условиях наиболее важна передача тепла через поршневые кольца в стенки цилиндра. При этом через верхнее кольцо уходит до 50-60% всего тепла, переданного из камеры в поршень, а через среднее — до 15-20%. Для того, чтобы обеспечить передачу тепла через кольца, необходимо точное (плотное) прилегание кольца к канавке поршня и к поверхности цилиндра. Дефекты кольца (плохое прилегание к цилиндру, поломки) и поршня (деформация или разрушение перемычек) приводят к снижению потока тепла от поршня и, соответственно, к его перегреву с последующим разрушением. Другая часть тепла от поршня передается через его юбку в стенку цилиндра, а также через палец в шатун и далее рассеивается в картере. Незначительная часть тепла уходит в картер в результате вентиляции внутри поршневого пространства при возвратно-поступательном движении поршня.
Тепловое состояние (т.е. распределение температуры) поршня в значительной степени зависит от его конструкции и материала. Эти факторы влияют на такие параметры, как зазор между поршнем и цилиндром, износ юбки и др. Чем хуже отвод тепла, тем больше температура поршня, тем больше его тепловое расширение и тем больше необходимый зазор. Если зазор между поршнем и цилиндром окажется меньше, чем надо, поршень в цилиндре может заклинить. При очень малом зазоре увеличивается трение юбки поршня о стенки цилиндра, из-за чего вместо отвода тепла может происходить его подвод (разогрев юбки от трения). После заклинивания и последующего остывания поршень, как правило, деформируется (сжимается по юбке), а на поверхности цилиндра появляются глубокие царапины (задиры), иногда со следами алюминия, перенесенного с поршня на материал гильзы.
При определенных условиях в эксплуатации бензиновых двигателей могут возникать нарушения процесса сгорания. К ним относятся детонация и преждевременное воспламенение.
Явление детонации широко известно. Внешние проявления детонации — характерный стук, появляющийся при работе на низкооктановом топливе с увеличением нагрузки (т. е. при открытии дроссельной заслонки).
Суть детонации заключается в ненормально быстром (в сотни раз быстрее обычного) сгорания части смеси. При этом образуются ударные волны, с большой скоростью распространяющиеся по камере сгорания. В ударной волне происходит скачкообразный рост давления и температуры среды, в которой распространяется волна. А это вызывает воспламенение смеси не в результате обычного распространения пламени (скорость порядка 20-30 м/с), а из-за ее разогрева в ударной волне, движущейся со скоростью более 1000 м/с.
Механизм возникновения детонации поддается изучению с большими трудностями. Опытным путем установлено, что компактные камеры сгорания с вытеснителями имеющие форму, близкую к сферической, менее склонны к образованию детонационных процессов, чем длинные и узкие камеры с острыми углами и выступами. Однако в каждом конкретном случае при разработке нового двигателя определить наилучшую форму камеры сгорания — дело очень ответственное, долгое и кропотливое.
В эксплуатации детонация наиболее часто возникает на низкооктановом топливе при малых и средних частотах вращения и больших нагрузках. Детонация изменяет характер протекания давления в цилиндре по углу поворота, резко увеличивает максимальное давление, температуру и нагрузки на детали двигателя. Последствия длительной работы двигателя с детонацией весьма тяжелы. В первую очередь это — поломка поршней и поршневых колец из-за ударных нагрузок. Наиболее подвержены поломкам перемычки поршней между канавками колец. Ударная волна, вызывая резкое повышение давления в зазоре между днищем поршня и цилиндром, бьет по верхнему поршневому кольцу. Удар передается на перемычку поршня, причем одновременно не по всей окружности кольца, а в конкретной достаточно узкой области, что облегчает поломку деталей.
Детонация вызывает не только поломку перемычек, но и перегрев и разрушение краев днища поршня (каверны на поверхности), поломку поршневых колец. Последующий перегрев поршня обычно настолько велик (из-за уменьшения теплоотвода через кольца), что выгорает огневой пояс поршня от днища до верхнего и даже нижнего поршневого кольца.
После поломки деталей падает давление в цилиндре и мощность двигателя, увеличивается прорыв газов в картер (и давление в картере), расход масла. Результатом длительной работы двигателя с детонацией может быть также износ по торцу верхней канавки поршня и верхнего кольца, износ поверхностей сопряжения поршня и поршневого пальца. Эти случаи встречаются довольно часто, но ускоренные износы не всегда удается связать с детонацией.
Режимы детонации ограничивают углы опережения зажигания на некоторых режимах. Это значит, что при увеличении опережения зажигания основные параметры двигателя повышаются, однако, работа на этих режимах недопустима из-за опасности поломки деталей. Электронные системы управления двигателем точно отлеживают эти режимы, в том числе с помощью датчиков детонации.
На некоторых двигателях (TOYOTA, NISSAN) вместо одной свечи устанавливают две на один цилиндр. Такая конструкция является достаточно эффективной для уменьшения склонности двигателя к детонации при повышении степени сжатия за счет сокращения длины пути фронта пламени по камере сгорания. Снижает вероятность возникновения детонации более низкая температура поверхностей камеры i сгорания и днища поршня. Это достигается интенсификацией i охлаждения камеры путем уменьшения толщины стенок, увеличения скорости течения охлаждающей жидкости у стенок и даже некоторым снижением уровня температуры охлаждающей жидкости (например, с 90-95°С до 80-85 0 С) за счет схемы и конструкции системы охлаждения двигателя.
У двигателей с впрыском топлива температура топливо-воздушной смеси на входе в цилиндр обычно меньше, чем у карбюраторных двигателей, поскольку у последних необходим подогрев смеси на впуске (иначе не будет качественного испарения и сгорания топлива). Поэтому двигатели с впрыском топлива при прочих равных условиях менее склонны к детонации, что позвопяет несколько увеличить у них степень сжатия. Аналогичное влияние оказывает промежуточное охлаждение воздуха у двигателей с наддувом.
Кроме детонации, на практике встречается явление преждевременного воспламенения, называемое также калильным зажиганием. При калильном зажигании происходит воспламенение смеси не от искрового разряда свечи, а от нагретых до очень высоких температур (более 700°С) поверхностей камеры сгорания. В качестве таких источников воспламенения могут выступать электроды свечи зажигания, тарелка выпускного клапана или частицы нагара, если нагар лежит на деталях достаточно толстым слоем.
Обычно калильное зажигание возникает из-за несоответствия характеристики свечи, рекомендованной изготовителем автомобиля, в частности, когда для двигателя с высокой степенью сжатия использована «горячая» свеча от низкофорсированного двигателя. При этом смесь в цилиндре самовоспламеняется несколько раньше, чем происходит искровой разряд, но процесс сгорания протекает нормальным образом. С ростом нагрузки и частоты вращения момент самовоспламенения отодвигается в раннюю сторону, из-за чего тепловое и силовое воздействие на детали двигателя, особенно, на поршень, значительно возрастает.
Опасность калильного зажигания заключается в том, что на начальной стадии его практически невозможно отличить «на слух» от обычного сгорания, в то время как с течение времени (обычно от нескольких десятков секунд до нескольких минут), когда у двигателя появляется посторонний звук и он начинает терять мощность, детали поршневой группы уже могут быть повреждены. Вследствие этого на двигателях современных автомобилей замена свечей зажигания оказывается весьма небезопасной для двигателя, если ставятся первые попавшиеся свечи.