Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двигатель внутреннего сгорания строение схема

4.2 Простейший одноцилиндровый двигатель внутреннего сгорания (ДВС)

Описание устройства простейшего двигателя

Чтобы сразу не смущать сложными терминами и громоздкими определениями, сначала рассмотрим простейший одноцилиндровый двигатель внутреннего сгорания (ДВС), работающий на бензине, устройство которого представлено на рисунке 4.1.

Состоит этот двигатель из блока с цилиндрическим отверстием внутри – гильзой цилиндра. В гильзе находится поршень, соединенный через шатун с коленчатым валом. Коленчатый вал, в свою очередь, связан с распределительным валом через цепь (эта связь постоянна и передаточное отношение (О том, что такое «передаточное отношение», будет рассказано в главе 5 «Трансмиссия») составляет 1 к 2, то есть распределительный вал делает один оборот за два оборота коленчатого вала).


Рисунок 4.1 Одноцилиндровый двигатель внутреннего сгорания.


Рисунок 4.2 Разрез бензинового двигателя внутреннего сгорания.


Рисунок 4.4 Двигатель внутреннего сгорания с воздушным охлаждением.

Распределительный вал вместе с клапанами расположен в головке блока цилиндров, которая установлена соответственно на блок цилиндров.

Теперь разложим все по частям.

Блок цилиндра — литая деталь из чугуна или из алюминиевого сплава. Блок цилиндров образует картер. По сути, это корпус, внутри которого находятся основные элементы кривошипно-шатунного механизма (о котором речь пойдет ниже). Этот корпус имеет двойные стенки (именуемые рубашкой блока). В полостях между стенками течет охлаждающая жидкость, если двигатель с жидкостным охлаждением. Если двигатель с воздушным охлаждением, то блок имеет одну стенку с многочисленными ребрами для отвода тепла, как показано на рисунке 4.3.

В блоке имеются гильза и масляные каналы для подвода смазки к трущимся деталям. Рабочая поверхность гильзы, с которой соприкасается поршень, называется зеркалом цилиндра.

Поршень имеет вид перевернутого стакана, обычно отлит из алюминиевого сплава. В цилиндр поршень устанавливается с очень небольшим зазором (обычно сотые доли миллиметра). Чтобы газы, образовавшиеся при сгорании топлива, через этот зазор не прорвались в картер блока цилиндров, поршень уплотнен кольцами. Обычно устанавливают два компрессионных кольца (они воспринимают основную нагрузку при перемещении поршня) и одно маслосъемное (оно состоит из нескольких элементов), необходимое для снятия со стенок цилиндра моторного масла. Поршень, шарнирно, то есть через палец соединен с верхней головкой шатуна, а шатун, в свою очередь, шарнирно соединен с коленчатым валом. Шатун вместе с коленчатым валом и называют кривошипно-шатунным механизмом. Благодаря шатуну поступательное движение поршня вверх и вниз преобразуется во вращательное движение коленчатого вала.

Примечание
Уважаемый читатель может подумать, что пропустил целый раздел, ведь на рисунке 4.1 отсутствует и палец, и верхняя головка шатуна, но это не так — вышеприведенное описание дано для общего представления о двигателе внутреннего сгорания, а вот устройство каждого из элементов подробно рассмотрено в разделе 4.7 «Блок цилиндров и кривошипно-шатунный механизм».

Головка блока цилиндра — по сути, это корпус (обычно из алюминиевого сплава), в котором, в зависимости от конструкции (Слова «в зависимости от конструкции» означают, что не всегда распределительный вал или валы располагают в головке блока. Об этом подробнее будет рассказано в главе 4.6 «Головка блока цилиндров»), находится распределительный вал (или валы), а также клапаны – впускной и выпускной. Распределительный вал и клапаны называют газораспределительным механизмом (ГРМ). Распределительный вал необходим для своевременного открытия впускных и выпускных клапанов. Клапаны плотно прилегают к головке блока цилиндра и прижимаются с помощью клапанных пружин.

Вот и весь четырехтактный бензиновый двигатель внутреннего сгорания. Сложного ничего нет.

Принцип работы двигателя внутреннего сгорания

Четырехтактным двигатель называется потому, что полный рабочий процесс разбит на четыре промежутка – такта. Из этих тактов только один рабочий, то есть тот, во время которого происходит перемещение поршня под действием газов, выделяющихся при сгорании топливовоздушной смеси. Каждый такт приходится (приблизительно) на один полуоборот коленчатого вала.

Примечание
Верхняя мертвая точка (ВМТ) — крайнее положение поршня в верхней части цилиндра.
Нижняя мертвая точка (НМТ) — крайнее положение поршня в нижней части цилиндра.
Расстояние от ВМТ до НМТ называется ходом поршня.

Наверняка, у каждого в детстве был велосипед. И, если спускала шина, то ее необходимо было подкачать насосом. Так вот, хотя и отдаленно, но этот насос для накачивания шин напоминает нам наш одноцилиндровый двигатель. Внутри цилиндрического корпуса насоса тоже есть клапаны и так же двигается поршень. Когда вы тяните ручку поршня на себя, через клапан в корпусе всасывается воздух, когда двигаете поршень вниз — клапан на впуске закрывается и воздух выходит через клапан на выпуске в трубку, попадая в шину колеса велосипеда. Теперь мысленно представим перевернутый насос, у которого мы начали перемещать поршень вниз, набирая при этом внутрь корпуса воздух, так же мысленно закрываем выпускное отверстие, например, пальцем, и начинаем перемещать поршень насоса вверх – воздух при этом начнет сжиматься, так как деваться ему некуда. Доведя поршень насоса до упора, мы возьми и подожги засыпанный до начала этого действа порох в корпусе. Сгорая, этот порох будет выделять большое количество газа, который, в свою очередь, повысит давление внутри корпуса и начнет перемещать поршень, только уже без нашего участия – самостоятельно. Когда порох полностью выгорит, а поршень дойдет до самой нижней точки, мы откроем выпускное отверстие, и начнем снова перемещать поршень вверх, выталкивая из корпуса насоса уже отработавшие свое газы. Вытолкнув продукты горения наружу, мы снова закрываем пальцем выпускное отверстие насоса и начинаем повторять все вышеперечисленное в той же последовательности. Вот так же приблизительно работает любой четырехтактный бензиновый двигатель. Поместите корпус насоса в блок, клапаны установите в головку, которую в свою очередь смонтируйте на блок, а поршень соедините через шатун с коленвалом и получите наш простейший одноцилиндровый двигатель.

Читать еще:  Двигатель alz не заводиться

Есть такое понятие, как «рабочий цикл». Это совокупность процессов, происходящих последовательно в цилиндре двигателя при вращении коленчатого вала на два полных оборота (720 o ). Рабочий цикл состоит из тактов.

Примечание
Читая далее описание процессов, вспомните о насосе, который был описан перед этим.

Собственно, ничего сложного. Практически все четырехтактные двигатели внутреннего сгорания, использующие в качестве топлива бензин, работают по такому принципу.

Первый такт. Впуск воздуха, смешанного с топливом

Коленвал, вращаясь, перемещает поршень вниз из ВМТ. В этот момент открыт впускной клапан, через него в цилиндр всасывается воздух вперемешку с распыленным топливом (в виде очень мелких капелек). Далее поршень достигает НМТ, впускной клапан закрывается

Второй такт. Сжатие

Коленвал продолжает вращаться, а поршень начинает от НМТ перемещаться вверх, сжимая при этом топливовоздушную смесь, дополнительно более тщательно смешивая топливо с воздухом, чтобы смесь была максимально однородная. Оба клапана закрыты

Третий такт. Рабочий ход

Поршень в ВМТ, в камере сгорания сжатая и нагретая до высокой температуры смесь, в этот момент возникает разряд между электродами свечи, который поджигает топливо. Сгорая, топливовоздушная смесь выделяет газы, которые, к слову, разогреты до 800 градусов Цельсия, создается высокое давление, под действием которого поршень перемещается вниз, толкая коленчатый вал. Весь процесс протекает до НМТ

Четвертый такт. Выпуск

Газы свое дело сделали, теперь от них необходимо избавиться, чтобы подготовить цилиндр для следующей порции топливовоздушной смеси. После НМТ, открывается выпускной клапан, поршень под действием силы инерции поднимается вверх, выталкивая отработанные газы. После того, как поршень достигнет ВМТ и будут удалены все отработанные газы, весь процесс повторится заново.

Устройство ДВС

Двигатель внутреннего сгорания – это одно из тех изобретений, которые в корне перевернули нашу жизнь – с лошадиных повозок люди смогли пересесть на быстрые и мощные автомобили.

Первые ДВС обладали малой мощностью, а коэффициент полезного действия не доходил даже до десяти процентов, но неутомимые изобретатели – Ленуар, Отто, Даймлер, Майбах, Дизель, Бенц и множество других – привносили что-то новое, благодаря чему имена многих увековечены в названиях известных автомобильных компаний.

ДВС прошли длительный путь развития от коптящих и часто ломающихся примитивных моторов, до сверхсовременных битурбированных двигателей, но принцип их работы остался все тот же – теплота сгорания топлива преобразуется в механическую энергию.

Название “двигатель внутреннего сгорания” используется потому, что топливо сгорает в середине двигателя, а не снаружи, как в двигателях внешнего сгорания – паровых турбинах и паровых машинах.

Благодаря этому ДВС получили множество положительных характеристик:

  • они стали намного легче и экономичнее;
  • стало возможным избавиться от дополнительных агрегатов для передачи энергии сгорания топлива или пара к рабочим частям двигателя;
  • топливо для ДВС обладает заданными параметрами и позволяет получать значительно больше энергии, которую можно преобразовать в полезную работу.

Устройство ДВС

Вне зависимости от того, на каком топливе работает двигатель – бензин, дизель, пропан-бутан или экотопливо на основе растительных масел – главным действующим элементом является поршень, который находится внутри цилиндра. Поршень похож на металлический перевернутый стакан (скорее подойдет сравнение с бокалом для виски – с плоским толстым дном и прямыми стенками), а цилиндр – на небольшой кусок трубы, внутри которой и ходит поршень.

В верхней плоской части поршня имеется камера сгорания – углубление круглой формы, именно в нее попадает топливно воздушная смесь и здесь же детонирует, приводя поршень в движение. Это движение передается на коленчатый вал с помощью шатунов. Шатуны верхней своей частью прикреплены к поршню с помощью поршневого пальца, который просовывается в два отверстия по бокам поршня, а нижней – к шатунной шейке коленчатого вала.

Первые ДВС имели всего один поршень, но и этого было достаточно, чтобы развить мощность в несколько десятков лошадиных сил.

В наше время тоже применяются двигатели с одним поршнем, например пусковые двигатели для тракторов, которые выполняют роль стартера. Однако больше всего распространены 2-х, 3-х, 4-х, 6-и и 8-цилиндровые двигатели, хотя выпускаются двигатели на 16 цилиндров и более.

Поршни и цилиндры находятся в блоке цилиндров. От того, как расположены цилиндры по отношению к друг другу и к другим элементам двигателя, выделяют несколько видов ДВС:

  • рядные – цилиндры расположены в один ряд;
  • V-образные – цилиндры расположены друг против друга под углом, в разрезе напоминают букву “V”;
  • U-образные – два объединенных между собой рядных двигателя;
  • X-образные – ДВС со сдвоенными V-образными блоками;
  • оппозитные – угол между блоками цилиндров составляет 180 градусов;
  • W-образные 12-цилиндровые – три или четыре ряда цилиндров установленные в форме буквы “W”;
  • звездообразные двигатели – применяются в авиации, поршни расположены радиальными лучами вокруг коленчатого вала.
Читать еще:  Bf 109 запуск двигателя

Важным элементом двигателя является коленчатый вал, на который передается возвратно-поступательное движение поршня, коленвал преобразует его во вращение.

Когда на тахометре отображаются обороты двигателя, то это как раз и есть количество вращений коленвала в минуту, то есть он даже на самых низких оборотах вращается со скоростью 2000 оборотов в минуту. С одной стороны коленвал соединен с маховиком, от которого вращение через сцепление подается на коробку передач, с другой стороны – шкив коленвала, связанный с генератором и газораспределительным механизмом через ременную передачу. В более современных авто шкив коленвала связан также со шкивами кондиционера и гидроусилителя руля.

Топливо подается в двигатель через карбюратор или инжектор. Карбюраторные ДВС уже отживают свое из-за несовершенства конструкции. В таких ДВС идет сплошной поток бензина через карбюратор, затем топливо смешивается во впускном коллекторе и подается в камеры сгорания поршней, где детонирует под действием искры зажигания.

В инжекторных двигателях непосредственного впрыска топливо смешивается с воздухом в блоке цилиндров, куда подается искра от свечи зажигания.

Газораспределительный механизм отвечает за согласованную работу системы клапанов. Впускные клапаны обеспечивают своевременное поступление топливновоздушной смеси, а выпускные отвечают за выведение продуктов сгорания. Как мы уже писали раньше, такая система используется в четырехтактных двигателях, тогда как в двухтактных необходимость в клапанах отпадает.

На данном видео показано как устроен двигатель внутреннего сгорания, какие функции выполняет и как он это делает.

Устройство четырехтактного ДВС

Устройство современного двигателя

Двигатель внутреннего сгорания в разрезе

На первых этапах обучения вам может показаться, что устройство двигателя автомобиля очень сложное и понять его дано не всем. Это не так. Для изучения устройства двигателя вам понадобиться чуть-чуть времени и внимательности. Пробегитесь глазами по основным деталям двигателя, прежде чем знакомиться с принципом его работы.

Для начала рассмотрим устройство двигателей внутреннего сгорания , из чего состоит двигатель и как работает. Эти основные понятия и термины вам пригодяться в процессе изучения работы двигателя. Строение простейшего двигателя мы рассмотрим на схеме.

Двигатели внутреннего сгорания различаются по:

  • способу приготовления горючей смеси: с внутренним ( дизели) и с внешним смесеобразованием (карбюраторы, инжекторы и т.д.).
  • по виду применяемого топливабензиновые, газовые и дизели (работающие на дизельном топливе);
  • по способу охлаждения — жидкостное охлаждение или воздушное охлаждение;
  • по расположению цилиндров — рядные, V-образные и другие;
  • по способу воспламенения горючей смеси — с принудительным воспламенением от электрической искры (инжекторные и карбюраторные двигатели) или с самовоспламенением от сжатия (дизельные двигатели).

Бензиновые двигатели

Бензиновые двигатели – это двигатели, которые работают на бензине, и оснащены системой принудительного зажигания. Для приготовления топливо-воздушной смеси в таких двигателях используются карбюраторы и инжекторные системы. Горючая смесь принудительно воспламеняется от электрической искры при завершении такта сжатия.

Дизельные двигатели

Дизельные двигателя – это двигатели, в которых происходит самовоспламение дизельного топлива от сжатия. Приготовление горючей смеси в дизельных двигателях происходит непосредственно в цилиндре двигателя.

Главные механизмы двигателя внутреннего сгорания:

  • кривошипно-шатунный механизм;
  • газораспределительный механизм;
  • система питания двигателя ;
  • система зажигания;
  • выхлопная система;
  • система охлаждения;
  • система смазки.

Двигатель внутреннего сгорания в разрезе:

1 — поддон; 2 — коленчатый вал; 3-шатун; 4 — блок цилиндров; 5 — поршень; 6 — гильза цилиндра; 7—выпускной трубопровод; 8 — впускной трубопровод; 9— карбюратор; 10 — коромысло; 11- ось коромысел; 12— распределитель зажигания; 13 — штанга; 14 — указатель уровня масла (щуп); 15 — распределительный вал; 16 — стартер; 17 — маслоприемник.

Устройство современного двигателя раздел в котором вы узнаете информацию, касающуюся конструкции и строения автомобильного двигателя. А также материалы в области работы современных систем и механизмов современного двигателя.

Бензиновый двигатель внутреннего сгорания: принцип работы

В основе принципа работы любого двигателя внутреннего сгорания лежит воспламенение небольшого количества топлива, обязательно высокоэнергетического, в небольшом замкнутом пространстве. При этом выделяется большое количество энергии, в виде теплового расширения нагретых газов. Так как давление под поршнем равно нормальному атмосферному, а компрессия в цилиндре намного превышает его, то под действием разницы давлений поршень совершает движение.

Для того чтобы двигатель внутреннего сгорания постоянно производил полезную механическую энергию, камеру сгорания цилиндра необходимо циклично заполнять новыми дозами воздушно-топливной смеси. В результате, поршень приводит в действие коленчатый вал, который и придает движение колесам автомобиля.

Двигатели почти всех современных автомобилей являются четырёхтактными по своему циклу работы, и энергия, полученная от сжигания бензина, почти полностью преобразовывается в полезную. Цикл Отто, так называется подобный принцип, по имени Николауса Отто, изобретателя двигателя внутреннего сгорания (1867 год).

Схема работы бензинового двигателя внутреннего сгорания:

Главным элементом двигателя внутреннего сгорания является поршень, который связан шатуном с коленчатым валом. Так называемый, кривошипно-шатунный механизм, преобразующий прямолинейное возвратно-поступательное движение поршня в радиальное движение коленвала.

Ниже более подробно расписан рабочий цикл бензинового двигателя:

1. Такт впуска

2. Такт сжатия

3. Рабочий такт

4. Такт выпуска

Следующий такт необязательно должен начинаться после окончания предыдущего. Такая ситуация, когда одновременно открыты оба клапана (впуска и выпуска), называется перекрытием клапанов. Это необходимо для эффективного наполнения цилиндра воздушно-топливным соединением, а также для более результативной очистки цилиндров от выхлопных газов. После этого рабочий цикл повторяется.

Читать еще:  Вортекс тинго двигатель чип тюнинг

Отличительной особенностью двигателя внутреннего сгорания является то, что поршень двигается прямолинейно, а движение, осуществляющееся при сгорании топливной смеси, — вращательное. Линейный ход поршней преобразовывается в поворотное движение, необходимое для работы колес автомобиля, при помощи коленчатого вала.

Ниже рассмотрены основные элементы двигателя, которые принимают участие в преобразовании тепловой энергии в механическую.

1. Свеча зажигания

Искровая свеча вырабатывает электрическую искру, которая воспламеняет воздушно-топливную смесь. Для равномерной и бесперебойной работы поршня искра должна появляться в заданный момент времени.

2. Клапаны

Выпускные и впускные клапаны закрываются и открываются в заданный момент, впуская воздух в цилиндр и выпуская отработанные газы. Во время процесса горения топливной смеси оба клапана закрыты. Клапан выпуска открывается до достижения поршня крайней нижней точки и остается открытым до прохождения поршня к верхней крайней точке. К этому моменту впускной уже будет открыт.

3. Поршень

Образующиеся во время сгорания топливной смеси горячие газы выдавливают поршень, передавая энергию через шатун и палец коленвалу. Для сохранения компрессии в цилиндрах на поршень устанавливаются уплотняющие кольца, изготовленные из высокопрочного чугуна. Для повышения износостойкости поршневые кольца покрываются тонким слоем пористого хрома. К основным характеристикам колец относятся следующие показатели: высота, наружный диаметр, радиальная толщина, форма разреза в стыке и упругость. Внешний диаметр поршневого кольца должен соответствовать внутреннему диаметру цилиндра. В настоящее время применяются узкие кольца (высотой — 1,5-2 мм) и широкие (высотой — 2,5-3 мм). Первые более надежны при частом движении поршня. Радиальная толщина увеличивается с возрастанием диаметра цилиндра. Износ поршневых колец происходит, в среднем, через каждые 3 тысячи километров пробега.

4. Шатун

Шатун соединяет коленчатый вал с поршнем. Вращение шатуна является двухсторонним, это нужно для того, чтобы его угол мог изменяться в зависимости от местоположения поршня, обеспечивая движение коленвала. Обычно шатуны бывают стальными, иногда — алюминиевыми.

5. Коленчатый вал

Поворот коленчатого вала осуществляется вследствие вертикального хода поршня. Коленвал приводит в движение колеса автомобиля.

Современные двигатели внутреннего сгорания делятся на два типа: карбюраторные и инжекторные.

В карбюраторном двигателе процесс приготовления воздушно-топливной смеси происходит в специальном устройстве — карбюраторе. В нем, используя аэродинамическую силу, горючее смешивается с воздушным потоком, засасываемым двигателем.

В инжекторном типе двигателя топливо впрыскивается под давлением в поток воздуха при помощи специальных форсунок. Дозировка горючего происходит при помощи электронного блока управления, который открывает форсунку электрическими импульсами. В двигателях устаревшей конструкции, этот процесс происходит с использованием специфической механической системы. Последний тип почти полностью вытеснил устаревшие карбюраторные силовые агрегаты. Это произошло из-за современных экологических стандартов, которые устанавливают высокие нормы чистоты выхлопных газов. Что повлекло за собой внедрение новых эффективных нейтрализаторов выхлопа (каталитических конвертеров или катализаторов). Такие системы нейтрализации требуют постоянного состава отработанных газов, который могут обеспечить только инжекторные системы впрыска топлива, контролируемые электронным блоком управления. Нормальная работа катализатора обеспечивается исключительно при соблюдении стабильного состава выхлопных газов. Необходимостью этого является то, что он требует содержания определенных пропорций кислорода в отработанных газах. Для соблюдения подобных условий в таких системах катализации обязательно устанавливается кислородный датчик (лямбда-зонд), который анализирует процент содержания кислорода в выхлопных газах и контролирует точность пропорций оксида азота, несгоревших остатков топлива и углеводородов.

Основными вспомогательными системами являются:

Система зажигания. Отвечает за поджигание топливной смеси в нужный момент. Она бывает контактной, бесконтактной и микропроцессорной. Система контактного типа состоит из распределителя-прерывателя, катушки, выключателя зажигания и свечей. Бесконтактная система аналогична предыдущей, только вместо прерывателя стоит индукционный датчик. Управление системой зажигания микропроцессорного типа осуществляется специальным компьютерным блоком, в ее состав входит датчик положения коленвала, коммутатор, блок управления зажиганием, катушки, датчик температуры двигателя и свечи. В двигателях с инжекторной системой к ней добавляется еще датчик положения дроссельной заслонки и термоанемометрический датчик массового расхода воздуха.

Система запуска двигателя. Состоит из специального электромотора (стартера), подключенного к аккумулятору, или механического стартера, использующего физические усилия человека. Применение этой системы объясняется тем, что для запуска рабочего цикла двигателя необходимо, чтобы коленчатый вал произвел хотя бы один оборот.

Система выпуска выхлопных газов. Обеспечивает своевременное удаление продуктов горения топливной смеси из цилиндров. Включает в себя выпускной коллектор, катализатор и глушитель.

Система приготовления воздушно-топливной смеси. Предназначена для приготовления и впрыска смеси горючего с воздухом, в камеру сгорания цилиндров двигателя. Может быть карбюраторной или инжекторной.

Система охлаждения. Современная система состоит из вентилятора, радиатора, термостата, расширительного бачка, жидкостного насоса, датчика температуры, рубашки и головки охлаждения блока цилиндров. Предназначена для создания и поддержания приемлемого температурного режима работы ДВС. Обеспечивает отвод тепла от цилиндров клапанной системы и поршневой группы. Может быть воздушной, жидкостной или гибридной.

Система смазки. Состоит из масляного фильтра, маслонасоса с маслоприемником, каналов в блоке и головках цилиндров для впрыска масла под высоким давлением, поддона картера. Предназначена для подачи автомобильного масла с целью уменьшения трения и охлаждения, к взаимодействующим деталям двигателя. Также циркуляция масла смывает нагар и продукты механического износа.

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]