Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое бессопловый ракетный двигатель

Что такое бессопловый ракетный двигатель

Схема двигателя показана на рис.1. Конструкция традиционно элементарна.

Топливо
Корпус

10,5 г, что для мотора общим весом 69,7 г просто отлично. Весовое преимущество на бессопловиках становится особенно ощутимо по мере роста калибра мотора. Отношение топливо/корпус получается более 6-и. Напомню, что на сопловых моторах у меня не было более 0,8.

Корпус можно сделать и более простой. Достаточно намотать один лист офисной бумаги на силикатном клею. Что и было проделано во втором варианте двигателя.

Зажигание

В БРДК-3 применено зажигание, не имеющее этого недостатка. В верхней части заряда устанавливается стандартный нихромовый воспламенитель. Он фиксируется кусочком катализированного топлива МИКС-1КП. Провода воспламенителя выводятся в верхнюю часть двигателя, после чего заливается эпоксидка, образующая заглушку. Для гарантии отсутствия прорывов газов через заглушку, часть контактных проводов, проходящая через заглушку, освобождается от изоляции на участке 5-7 мм.

Такой способ не очень удобен для запуска мотора с нижней части ракеты, но для верхних ступеней такой вариант даже предпочтительнее, поскольку позволяет произвести запуск от таймера, установленного в корпусе ракеты.

Сборка

С одной стороны корпуса вставляется толстостенная шайба-заглушка с несквозным центрирующим отверстием Ø7,5 мм. На эту заглушку укладывается 60 г карамели. Затем через топливо вставляется слегка смазанная подсолнечным маслом шпилька Ø7,3 мм, до упора в центрирующее углубление. С внешнего торца шпилька центрируется латунным поршнем, свободно скользящим по шпильке. Эта конструкция зажимается в струбцину или настольный пресс, чтобы зафиксировать шпильку и заглушку. Далее с помощью гайки поршень поджимается к топливному заряду, запрессовывая его в корпус. При необходимости между поршнем и гайкой вставляется проставка из металлической трубки, увеличивающая ход поршня.

После застывания заряда, где-то через сутки, конструкция вынимается из пресса. Теперь, поджимая поршень той же самой гайкой, вытаскиваем каналообразующую шпильку из заряда. Получаем очень прочную и качественную отливку, что для бессопловика очень важно.

Далее устанавливается запал с помощью кусочка расплавленного состава МИКС-1КП. Данный состав обладает очень полезным свойством. Кроме того, что он очень легко воспламеняется и быстро горит, он еще и очень быстро застывает. Это позволяет нам почти сразу перейти к заливке эпоксидной заглушки. Толщина заливки 10-12 мм, больше не нужно.

После застывания эпоксидной смолы мотор готов.

Характеристики

Испытания двигателя БРДК-3 были проведены 07.11.2010 на стенде ТСК-2-5 на базе 5-ти килограммовых весов. К сожалению, это было ошибкой. Я ожидал от мотора тяги 5-6 кг в течение 2-3-х секунд. На практике двигатель моментально вышел на режим развил тягу существенно за 7 кг и отработал не более секунды. Это очень даже неплохо, но весы стенда не выдержали такого издевательства.

Снять полноценные характеристики удалось в повторном испытании 21.11.2010г модификации БРДК-3с. Тут уже были использованы 10-и килограммовые весы. Данные обсчитал в программе ALTIMMEX. Характеристики показаны на рис.3. В расчете удельного импульса Isp учтено, что в развитии тяги поучаствовало дополнительно 3 г топлива трассера. Движок получился довольно приемистый с неплохим удельным импульсом. Длину трассера придется еще подбирать, 3 секунды замедления это конечно мало.

Модификация

Схема двигателя показана на рис.4. Чтобы не утомлять повторным описание практически такого же мотора, остановлюсь только на отличиях.

Прежде всего, корпус был сделан из одного листа офисной бумаги на силикатном клею. Длину корпуса пришлось увеличить для размещения трассера длиной 25 мм.

Понятно, что развернуть систему зажигания на 180° было совсем несложно. Воспламенитель фиксировался абсолютно также, но был вставлен контактами вниз через сопло. Надо только учесть, что при заливке трассера следует зафиксировать провода воспламенителя в районе сопла какой-нибудь, типа бумажной, пробкой. Горячее топливо трассера размягчает комочек состава МИКС-1КП и, если этого не сделать, запал может вывалиться.

Заглушка делается также из эпоксидки, но по технологии, использованной на торцевике ТРДК1. Канал для воспламенения вышибного заряда формируется по схеме отработанной для двигателя РДК-3ФЭ.

Что такое бессопловый ракетный двигатель

Повышенный интерес к бессопловым РДТТ с начала 1970-х гг. объясняется главным образом высокой эффективностью бессоплового исполнения двигателя с точки зрения затрат. Ожидалось, что устранение из конструкции соплового блока, снижение требований к теплоизоляции камеры и относительная простота формы заряда ТРТ позволят снизить на 10—20% общую стоимость РДТТ. Несколько более низкая эксплуатационная эффективность бессоплового двигателя во многих случаях может быть компенсирована заполнением объема, ранее занятого сопловым блоком, дополнительным количеством топлива. РДТТ такой конструкции, отличающейся повышенной относительной массой топлива, как правило, позволяет обеспечить такое же приращение скорости полета ракеты, как и в случае значительно большего по размерам двигателя той же тяги в сопловом исполнении.

Свойства ТРТ, требуемого для бессопловой конфигурации, значительно отличаются от свойств топлива, применяемого в двигателях с сопловым блоком. Чтобы предотвратить появление длительного и неэффективного периода догорания в конце работы двигателя и уменьшить эффекты эрозионного горения, в бессопловом РДТТ нужно обеспечить более высокую скорость горения топлива. Механические свойства таких ТРТ при низких и высоких температурах должны быть лучше: при низких температурах их повышенная способность деформироваться без разрушения позволяет выбрать оптимальные величины свода горения заряда, плотности заряжания двигателя и полной тяги, а при высоких температурах это обеспечит сохранение целостности заряда ТРТ в условиях высоких сдвиговых нагрузок, вызванных большими продольными перепадами давления в камере.

Читать еще:  Что указывается на шильдике двигателя

В результате стоимость ингредиентов топлива и его разработки для бессоплового двигателя, как правило, выше. Несмотря на это, возможна разработка бессоплового твердотопливного ускорителя, стоимость которого была бы на 10% ниже

Рис. 69. Схема соплового блока со сбрасываемым соплом [1411. 1 — сопло прямоточного воздушно-реактивного двигателя; 2 — сбрасываемое сопло РДТТ; 3 — пиротехнический стопор; 4— стопорное кольцо.

стоимости ускорителя обычной конструкции либо, в качестве альтернативы, тяговые характеристики на

Интерес к бессопловой конфигурации РДТТ возрос недавно в связи с концепцией интегральных твердотопливных ракетно-прямоточных ускорителей [126, 141, 167]. Первоначально в твердотопливных ускорителях использовалось сбрасываемое сопло (рис. 69), что вызывало ряд осложнений в ущерб характеристикам. К достоинствам бессоплового ускорителя относятся: 1) отсутствие опасности соударения соплового блока, выбрасываемого из двигателя, с самолетом-носителем; 2) простота

Рис. 70. Схема конструкции бессоплового твердотопливного ускорителя [141]. 1 — воспламенитель; 2 — заряд ТРТ; 3 — кремний-фенольное сопло.

конструкции; 3) надежность; 4) повышенная массовая доля топлива; 5) пониженная стоимость.

Бессопловый ускоритель, конструкция которого показана на рис. 70, отличается тем, что он, обладая хорошими тяговыми характеристиками, не имеет движущихся частей, топливный заряд выгорает в нем равномерно, а эффекты эрозии пренебрежимо малы.

Бессопловой ракетный двигатель твердого топлива

Владельцы патента RU 2517971:

Изобретение относится к ракетной технике и может быть использовано при создании стартово-разгонных ступеней для ракет с прямоточными воздушно-реактивными двигателями и во вспомогательных ракетных двигателях твердого топлива. Бессопловой ракетный двигатель твердого топлива включает камеру сгорания с передним днищем, цилиндрической частью и задним торцом, а также скрепленный с камерой сгорания заряд с центральным каналом. Заряд состоит из двух последовательно расположенных частей. Большая часть заряда расположена у переднего днища и выполнена с цилиндрическим центральным каналом. Меньшая часть заряда расположена у заднего торца камеры сгорания, имеет центральный канал, площадь проходного сечения которого плавно увеличивается в сторону выходного сечения, и изготовлена из топлива, имеющего скорость горения, на 30%÷50% меньшую, чем скорость горения большей части заряда. Масса меньшей части заряда составляет 2%÷10% от общей массы заряда. Изобретение позволяет повысить эффективность использования заряда твердого топлива, за счет уменьшения разгара критического сечения его канала. 4 з.п. ф-лы, 2 ил.

Изобретение относится к ракетной технике и может быть использовано при создании стартово-разгонных ступеней для ракет с прямоточными воздушно-реактивными двигателями (ПВРД) и во вспомогательных РДТТ.

В настоящее время в ПВРД наиболее распространены конструкции с вкладным стартово-разгонным РДТТ, который вставляется в камеру сгорания ПВРД, центрируется и фиксируется в ней. После окончания работы фиксаторы срезаются и корпус РДТТ выталкивается через сопло ПВРД скоростным напором воздуха. По такой схеме работают стартово-разгонные ступени ракет с ИПВРДЖ «Х-31» и «Москит». Стартово-разгонный РДТТ может быть встроен в камеру сгорания ПВРД и оставаться в ней до полного окончания работы двигательной установки. Данные конструктивные схемы не позволяют использовать весь объем камеры сгорания и потеря объема составляет более 4,5%-5%. От указанного недостатка свободна схема стартово-разгонной ступени с вкладным или скрепленным со стенкой камеры сгорания ПВРД зарядом твердого топлива. Первый в мире интегральный прямоточный воздушно-реактивный двигатель (ИПВРД) советской зенитной ракеты 3М9 имеет вкладной, бронированный по наружной поверхности заряд ТТ и отстреливаемое сопло.

В развитии этой схемы был предложен заряд, имеющий внутренний канал в виде цилиндра с профилированным выходным участком, который в процессе горения создает эффект расходно-геометрического сопла (Интегральные прямоточные воздушно-реактивные двигатели на твердых топливах (Основы теории и расчета) / В.Н. Александров, В.М. Быцкевич, В.К. Верхоломов и др. — М. / ИКЦ «Академкнига», 2006, с.191-193).

В цилиндрической части канала продукты сгорания твердого топлива ускоряются до скорости звука за счет подвода массы и до сверхзвуковой скорости — в профилированной части канала. Такой РДТТ не имеет жесткого сопла и называется — бессопловой РДТТ (БСРДТТ). Использование его в качестве стартово-разгонной ступени в ИПВРД считается весьма перспективным.

Преимуществами данной конструкции являются:

— отсутствие сбрасываемых элементов во время полета;

— простота конструкции и, как следствие, ее дешевизна;

— высокое массовое совершенство и коэффициент заполнения топливом.

К недостаткам БСРДТТ следует отнести:

— более низкий среднеинтегральный удельный импульс тяги двигателя по сравнению с удельным импульсом РДТТ с соплом;

— диаграмма давления в камере БСРДТТ существенно неравномерна (дегрессивна) по времени работы, в силу чего увеличивается масса конструкции двигателя.

Задачей предлагаемого изобретения является повышение удельного импульса тяги БСРДТТ и уменьшение дегрессивности зависимости давление-время, то есть максимального и минимального давления в камере сгорания. Кроме того, данное изобретение позволит повысить удельный импульс тяги БСРДТТ на 5%÷10% по сравнению с аналогом из-за уменьшения разгара минимального сечения на выходе из канала.

Читать еще:  Гул двигателя при 2000 оборотах

Технический результат состоит в увеличении геометрической степени расширения потока в выходном сечении за счет уменьшения разгара критического сечения канала, что повышает эффективность использования заряда твердого топлива.

Технический результат достигается заявленной конструкцией бессоплового ракетного двигателя твердого топлива. Бессопловой ракетный двигатель твердого топлива содержит камеру сгорания с передним днищем, цилиндрической частью, задним торцом и скрепленный с камерой сгорания заряд с центральным каналом. Заряд выполнен из двух последовательно расположенных частей. Большая часть заряда, расположенная у переднего днища, выполнена с цилиндрическим центральным каналом. Меньшая часть заряда расположена у заднего торца камеры сгорания, снабжена центральным каналом, площадь проходного сечения которого плавно увеличивается в сторону выходного сечения, при этом увеличивается геометрическая степень расширения канала (сопла). Кроме того, эта часть заряда изготовлена из топлива, имеющего скорость горения, на 30%÷50% меньшую, чем скорость горения большей части заряда, а ее масса составляет 2%÷10% от общей массы заряда. Такое соотношение характеристик зарядов позволит обеспечить повышение удельного импульса тяги двигателя и снизить дегрессивность диаграммы давления двигателя.

Применение заряда из медленногорящего топлива, размещенного на выходе из канала, способствует уменьшению разгара выходного сечения канала и, как следствие, повышению среднеинтегрального давления продуктов сгорания за время работы.

Оценки, проведенные с использованием формулы Бори (зависимость давления в камере от характеристик топлива), показывают, что уменьшение скорости горения заряда, расположенного у заднего торца камеры сгорания, на ≈30% при показателе степени в законе горения ν, равном 0,4, приводит к повышению среднеинтегрального давления на 50%, что снижает эффект падения давления в камере сгорания по времени. Причем этот эффект усиливается с увеличением показателя ν. Оценки удельного импульса БСРДТТ для данного варианта показывают, что возможно увеличение удельного импульса тяги на ≈10%.

Кроме того, внутренний канал меньшей части заряда может быть выполнен в виде усеченного конуса с основанием, расположенным у заднего торца камеры сгорания, либо в виде сверхзвуковой части сопла Лаваля, что дает возможность дополнительно повысить удельный импульс тяги в связи с уменьшением потерь на рассеяние [Газодинамические и теплофизические процессы в ракетных двигателях твердого топлива / A.M. Губертов, В.В. Миронов, Д.М. Борисов и др.; Под ред. А.С. Коротеева. М.: Машиностроение, 2004]. Прирост удельного импульса при этом оценивается в 2%÷4%.

Кроме того, граница раздела большего и меньшего зарядов представляет собой либо коническую поверхность, образующая которой перпендикулярна образующей соплового контура, для конического центрального канала меньшей части заряда, либо коническую поверхность, образующая которой перпендикулярна касательной к образующей центрального канала в точке, принадлежащей окружности, формирующей критическое сечение, для центрального канала меньшей части заряда в виде сверхзвуковой части сопла Лаваля. Это дает дополнительную возможность повысить удельный импульс тяги за счет образования входного конуса в сопловой участок канала заряда.

Изобретение поясняется чертежами.

На фиг.1 представлен общий вид предлагаемой конструкции БСРДТТ, где центральный канал меньшей части заряда выполнен в виде усеченного конуса.

На фиг.2 представлен общий вид предлагаемой конструкции РДТТ, где центральный канал меньшей части заряда выполнен в виде сверхзвуковой части сопла Лаваля.

Двигатель (фиг.1, 2) состоит из камеры сгорания 1, в которой установлен скрепленный с ее стенками заряд твердого топлива, состоящий из двух частей 2, 3. Часть 2 — заряд твердого топлива с высокой температурой горения, расположенный у переднего днища 7, а часть 3 — заряд твердого топлива с низкой температурой горения, расположенный у заднего торца 8, имеет контур 4 (фиг.1), площадь проходного сечения которого плавно увеличивается в сторону выходного отверстия, либо профилированную сверхзвуковую часть 4 (фиг.2). Граница раздела большего и меньшего зарядов представляет собой коническую поверхность 5 (фиг.1, 2). Твердое топливо поджигается воспламенителем 6.

Двигатель работает следующим образом. После срабатывания воспламенительного устройства 6, установленного в переднем днище 7 камеры сгорания 1, воспламеняются части заряда 2 и 3. Продукты сгорания части заряда 3 формируют поток низкотемпературных продуктов сгорания, а горящий заряд 2 создает высокотемпературный поток.

В настоящее время изготовлены модели БСРДТТ и проводятся экспериментальные исследования для определения эффективности предлагаемых вариантов конструкции.

1. Бессопловой ракетный двигатель твердого топлива, состоящий из камеры сгорания с передним днищем, цилиндрической частью, задним торцом и скрепленного с камерой сгорания заряда с центральным каналом, отличающийся тем, что заряд состоит из двух последовательно расположенных частей, при этом большая часть заряда, расположенная у переднего днища, выполнена с цилиндрическим центральным каналом, а меньшая часть заряда расположена у заднего торца камеры сгорания, имеет центральный канал, площадь проходного сечения которого плавно увеличивается в сторону выходного сечения, и изготовлена из топлива, имеющего скорость горения, на 30%÷50% меньшую, чем скорость горения большей части заряда, а масса меньшей части заряда составляет 2%÷10% от общей массы заряда.

2. Бессопловой ракетный двигатель твердого топлива по п.1, отличающийся тем, что центральный канал меньшей части заряда выполнен в виде усеченного конуса с основанием, расположенным у заднего торца камеры сгорания.

3. Бессопловой ракетный двигатель твердого топлива по п.1, отличающийся тем, что центральный канал меньшей части заряда выполнен в виде сверхзвуковой части сопла Лаваля с основанием, расположенным у заднего торца камеры сгорания.

Читать еще:  Faw 6371 что за двигатель

4. Бессопловой ракетный двигатель твердого топлива по п.2, отличающийся тем, что граница раздела большей и меньшей частей заряда выполнена в виде конической поверхности, образующая которой перпендикулярна образующей центрального канала меньшей части заряда.

5. Бессопловой ракетный двигатель твердого топлива по п.3, отличающийся тем, что граница раздела большей и меньшей частей заряда выполнена в виде конической поверхности, образующая которой перпендикулярна касательной к образующей центрального канала меньшей части заряда в точке, принадлежащей окружности, формирующей критическое сечение сопла Лаваля.

2.3.4. Анализ отказов двигателя при стендовых испытаниях

Аномальные испытания могут сопровождаться разрушением РДТТ (рис. 2.7, а) или проявляться в виде недопустимых (выходящих за пре­делы заданных требований) отклонений каких-либо параметров, напри­мер, давления в РДТТ (рис. 2.1,6).

Анализ неисправностей, отказов и аварий двигателя при стендовых испытаниях необходим не только для доработки двигателя, но и для своевременного в случае необходимости внесения корректив в методо­логию и техническую оснащенность стендовых испытаний.

Возможны следующие причины неисправностей двигателя:

конструктивные недостатки двигателя;

отступления от технологического процесса при изготовлении его узлов;

искажения датчиковой аппаратуры;

неполное представление об условиях работы двигателя на испытательном стенде;

выход из строя стендового оборудования;

неисправности в работе систем, установленных на двигателе. На начальном этапе отработки возможные неисправности чаще всего связаны с недостаточным обоснованием новых схемно-конструктивных решений и неполнотой сведений о некоторых рабочих процессах и об ус­ловиях работы отдельных узлов; на поздних этапах отработки — со случайными производственными дефектами, с нарушениями условий подготовки и проведения стендовых испытаний.

Рис. 2.7 Зависимости давления от времени при разрушении двигателя (а) и нерас­четной работе узлов (б): 1 разрушение при выходе на режим (разрушение заряда, образование дополнительной поверхности горения); 2 — разрушение из-за дефекта бронирующего покрытия, отслоения защитно-крепящего слоя; 3 — разрушение из-за нарушения герметичности корпуса; 4 — расчетная зависимость; 5 — нерасчетное срабатывание воспламенительного устройства; 6 — падение давления из-за случайного увеличения площади критического сечения сопла; 7 — увеличение давления в конце работы двигателя (из-за разрушения остатков заряда, возрастания скорости горения периферийных слоев твердого топлива вследствие локальных физико-химических процессов)

При анализе результатов аномального испытания составляют перечень возможных причин, включая прежде всего индивидуальные конструктивные и технологические отличия данного конкретного двигателя и условий его испытания [33]. Последствия оценивают с помощью математического и физического моделирования, стремясь к наиболее достоверному воспроизведению аномального процесса.

2.3.5. Горение старого заряда в камере прямоточного двигателя

Старт ракеты с прямоточным воздушно-реактивным или ракетно-прямоточным двигателями может быть осуществлен с помощью размещенного в камере твердотопливного заряда. В этой же камере после выгорания заряда происходит горение (дожигание) топлива ПВРД (РПД) в смеси с воздухом. Могут быть два варианта условий горения стартового заряда:

1) при наличии специального стартового сопла, отбрасываемого после сгорания заряда (рис. 2.8);

2) при отсутствии сопла (бессопловый двигатель); в этом случае канал заряда выполняется коническим в выходной части (рис. 2.9), скорость течения на входе в эту часть равна скорости звука, на большей части поверхности канала происходит интенсивное эрозионное горение; для топлива Нf() = 2. 4 при= 1 (см. п. 3.3.1).

При условии, что горение происходит по поверхности круглого цилиндрического канала постоянной длины, отношение значения расхода топлива в конце работы такого двигателя к начальному приблизительно равно (); падение давления по длине зарядар(х) : = (1 +к)(1+к). Процесс перехода с ракетного на прямоточ­ный режим начинается в конце падения давления в камере после сгора­ния стартового заряда. Под действием скоростного напора воздушного потока вскрывается заглушка на выходе из каналов воздухозаборника, одновременно отстреливается стартовое сопло (1-й вариант).

С целью надежного включения прямоточного двигателя должны быть обеспечены соответствующие запасы тяги двигателя и устойчивости работы воздухозаборника, исключено излишнее торможение. Поэтому время задержки включения воспламенительного устройства прямоточного двигателя ограничено снизу и сверху.

На переходный процесс с ракетного на прямоточный режим работы оказывают влияние следующие факторы:

1) догорание остатков стартового заряда твердого топлива и тепломассовыделение с поверхности тепловой защиты камеры дожигания;

2) дополнительные потери полного давления в камере дожигания, связанные с процессом срабатывания заглушек воздухозаборника;

3) высота (расход воздуха), на которой происходит запуск (запас устойчивости воздухозаборника уменьшается с ростом высоты).

Рис. 2.8 Режим работы двигательной установки ракеты РПД на твердом топливе:

а – стартовый режим; б – работа РПД; 1 – ГГ; 2 – стартовый заряд твердого ракетного топлива; 3 – стартовое сопло; 4 – заглушка в входа камеру дожигания; 5 – сопловой блок ГГ; 6 – заряд твердого топлива с избытком горючего.

Рис. 2.9, Изменение давления в осесимметричном бессопловом РДТТ (д) и расчет­ные газодинамические параметры в плоском бессопловом РДТТ (б, горение по цилиндрической части канала):

1 — давление у переднего торца заряда; 2 — давление в выходном сечении цилинд­рической части канала; 3 — линии постоянства числа М; 4 – изобары.

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]