Газопоршневая электростанция
Газопоршневая электростанция
Газопоршневая электростанция — это система генерации, созданная на основе поршневого двигателя внутреннего сгорания, работающего на природном или другом горючем газе. Возможно получение двух видов энергии, (тепло и электричество) и этот процесс называется «когенерация». В случае если в газопоршневых электростанциях используется технология, позволяющая получать ещё и холод (очень актуально для вентиляции, холодоснабжения складов, промышленного охлаждения), то данная технология будет называться «тригенерация».
Содержание
- 1 Конструкция газовых (газопоршневых) двигателей (ГПД)
- 2 Топливо
- 3 Преимущества и недостатки
- 4 См. также
- 5 Ссылки
Конструкция газовых (газопоршневых) двигателей (ГПД) [ править | править код ]
ГПД представляет собой ДВС с внешним смесеобразованием и искровым зажиганием горючей смеси в камере сгорания, использующий в качестве топлива газ и работающий по циклу Отто. Энергия, выделившаяся при сгорании топлива, в газовом двигателе производит механическую работу на валу, которая используется для выработки электроэнергии генератором электрического тока. Газовые двигатели используются для работы в составе генераторных установок, предназначенных для постоянной и периодической работы (пиковые нагрузки) с комбинированной выработкой электроэнергии и тепла, а также в качестве аварийных источников энергии. Кроме того, они могут работать как в составе холодильных установок, так и для привода насосов и газовых компрессоров.
Топливо [ править | править код ]
Газовые двигатели могут использовать различные виды газа: природный, газы с низкой теплотворной способностью, невысоким содержанием метана и низкой степенью детонации или газы с высокой теплотворной способностью- факельный, пропан, бутан, а также приспособлены к перестройке для работы с одного вида газа на другой.
Кроме того, имеется возможность применения двутопливных двигателей, работающих одновременно на жидком и газообразном видах топлива:
- пропан-бутановые смеси;
- природный газ (сжиженный, сжатый, магистральный);
- попутный нефтяной газ и пары больших дыханий резервуаров;
- промышленный газ (пиролизный, коксовый, биогаз, шахтный, газ сточных вод и т. д.).
Области использования: буровые платформы и скважины, шахты, очистные сооружения, в качестве резервного, вспомогательного или основного источника электроэнергии на предприятиях, в строительстве, административных и медицинских учреждениях, аэропортах, гостиницах, узлах связи, системах жизнеобеспечения и т. п. в автономном режиме или совместно с централизованными системами электроснабжения и тепла.
Преимущества и недостатки [ править | править код ]
По сравнению с микротурбинами у ГПД высокие показатели КПД, отсутствие влияние на КПД температуры окружающего воздуха, меньшее потребление газа по сравнению с микротурбинами, соответственно меньше выхлопа в окружающую среду. Стоимость станции на ГПД обходится более чем в 2 раза дешевле от 500 до 1000 евро за киловатт, тогда когда у микротурбин минимум от 1000 евро за киловатт. [ источник не указан 1901 день ] Одним из недостатков, является наличие большого количества вредных веществ в выхлопе, что требует применения катализаторов. Вредные вещества в выхлопе появляются из-за сгорания моторного масла, примерно 0,2 грамма на выработку 1 киловатт-часа электроэнергии. Для снижения воздействия на окружающую среду электростанциям требуются дымовые трубы.
ГПД могут работать как на сжиженном, так и на сжатом газе. Это позволяет использовать газовые двигатели не только при подключении к газовой магистрали. При небольшой мощности
1 кВт, достаточно подключить баллон со сжиженным газом через газовый редуктор.
Как сравнивать газопоршневые установки
Данный материал предназначен специалистам, перед которыми стоит задача — провести сравнение электростанций двух и более различных производителей, каждый из которых предлагает свои стандарты и правила сравнения. Исследование не отвечает на вопрос о том, какой же из производителей лучше, однако с помощью опубликованных стандартов и подходов можно найти наиболее приемлемый вариант для каждого отдельно взятого объекта.
Часть первая — сравнение производителей разных категорий
На рынке газопоршневых установок присутствуют предложения совершенно разного уровня исполнений. Перед тем, как начинать анализ цен на оборудование, необходимо понимать, к какой категории качества и уровня относится то или иное решение. Ни один потребитель не заинтересован в приобретении «голой» газопоршневой электростанции, в первую очередь любого заказчика интересует комплексное решение, включающее основное и вспомогательное оборудование, и именно о таких решениях пойдёт речь.
В настоящее время существует лишь несколько заводов, производящих комплексные решения, начиная непосредственно от газового двигателя. В такие решения включены и газопоршневые электростанции, и дополнительное оборудование, системы утилизации тепла, управление, охлаждение — словом всё то, что необходимо для работы объекта в целом. Таких заводов не так уж и много — Jenbacher, Siemens, MWM, Wartsila и некоторые другие. Именно такие компании имеют наибольший опыт в производстве комплексных решений, так как они производят их с самого начала, с газового двигателя, и наилучшим образом понимают все нюансы работы оборудования. Именно они больше всего заботятся о качестве своих решений и самых позитивных отзывах от конечного заказчика.
Европейские компании, которые перекупают двигатели или генераторные установки у указанных выше заводов и доукомплектовывают их на своё усмотрение. Кроме перекупки двигателей эти компании оказывают услуги пакетирования тем заводам, которые могут производить двигатели, но не имеют опыта или возможности делать полноценное решение, например, Doosan, Caterpillar, Perkins. На наш взгляд продукция этой группы уступает по качеству «родной» заводской сборке. Кроме этого нужно учитывать, что в один день пакетировщик покупает одни двигатели, а в другой — иные. Ожидать полноценной поддержки и наличия запчастей, наверное, не стоит.
- Двигатели, изначально разработанные для работы на газу
- Двигатели, переделанные из дизельных двигателей, путем замены системы воспламенения и подачи топлива.
Самая спорная категория. К сожалению, в России ряд интеграторов покупают газопоршневые двигатели сомнительного происхождения — БУ или восстановленные. Далее по своему усмотрению собирают вокруг них комплексную теплоэлектростанцию на любом, по своему усмотрению, оборудовании. В ход могут идти китайские комплектующие или устройства, снятые с других электростанций. Нам известны случаи, когда клиент только после поломки ГПУ, купленной у Российского интегратора, узнавал о том, что двигатель уже был в ремонте и является восстановленным.
Казалось бы, такая большая разница делает невозможным сравнение электростанций разной категории между собой. Однако это не так — разделив стоимость на показатель качества, можно определить «приведенную цену». К примеру первую категорию разделить на 100%, вторую — на 85% а третью — на 70%. И производить сравнение уже «приведенных» цен, отражающих не только фактическую стоимость оборудования, но и учитывающих «поправку на качество».
Часть вторая — сравнение в одинаковых условиях
Проводя сравнение любых производителей, на второе место выходит такой вопрос как расход газа (на первом, естественно, остаётся вопрос стоимости). Однако следует помнить, что газообразное топливо в зависимости от региона и условия поставки может иметь разную калорийность. Соответственно, чем выше калорийность (теплотворная способность) газа, тем меньший объем этого газа потребуется на производство 1 кВт*ч электроэнергии.
Калорийность газа (традиционно измеряется в килокалориях), внутренняя энергия и его теплотворная способность (традиционно измеряется в мегаджоулях) жестко связаны по формуле:
1000 kcal = 4.1868 MJ = 1.163 кВт*ч
Это означает, что 1 нм3 газа с калорийностью 1000 kcal содержит в себе 4,1868 мегаджоулей энергии, или 1,163 кВт/ч.
Пропорциональным образом выясняем, что 1 нм3 газа с калорийностью 8000 kcal содержит в себе 33,4944 MJ энергии, или 9,304 кВт/ч.
Внутренняя энергия 1 нм3 этого газа, равная 9, 304 кВт*ч, показывает, что если 1 нм3 этого газа (с калорийностью 8000 kcal) сгорает в камере сгорания газопоршневой электростанции, чей электрический КПД которой равен 39%, то в результате производится
9,304 * 0,39 = 3,6286 кВт*ч
Таким образом, на производство 1 кВт *ч в электростанции с электрическим КПД 39% из газа с калорийностью 8000 kcal (или с теплотворной способностью 33,5 МДж) тратится:
1 / 3,6286 = 0,2755 нм3 газа.
Как видно, зависимость между калорийностью газа (его теплотворной способностью) и расходом газа всегда имеет прямую зависимость — чем выше калорийность, тем ниже расход топлива. Имея только часть значений, например, только КПД электростанции, можно определить её расход на газе с любой калорийностью, что в свою очередь позволит провести сравнение в одинаковых исходных данных по топливу.
Газопоршневые электростанции использующиеся для кратковременной работы в качестве резервного источника можно прекрасно использовать без дополнительных затрат на установку системы утилизации тепла (когенерации), так как стоимость этой системы не окупиться за счет редкого использования электростанции. В электростанциях, предназначенных для постоянной работы ситуация другая.
Вне зависимости от желания владельца, газопоршневая электростанция будет производить тепловую энергию, так как топливо детонирует (сгорает) в камере сгорания. Это бесплатное тепло может сэкономить значительные средства, которые были бы затрачены на производство того же самого количества тепла в котельной.
Сравнивать электростанции только по электрическому КПД не правильно, так как электростанции производят не только электричества. Производить сравнение можно и нужно по сумме факторов — КПД электрическому и КПД тепловому. При проведении технико-экономического обоснования в обязательном порядке следует учитывать утилизируемое тепло, так как только при таком построении энергоцентра его окупаемость наступит скорее.
Одинаковая цена и одинаковый расход газа не делает электростанции одинаковыми. Существуют ещё такие параметры как ресурс и стоимость технического обслуживания. К примеру, если отечественная газопоршневая электростанция стоит в два раза дешевле чем импортная, а её ресурс в семь раз меньше (8000 моточасов против 60 000), то наверное, её цена не совсем актуальна. За тот же срок владения отечественную придётся поменять несколько (явно больше двух) раз.
Техническое обслуживание, то есть ежедневные затраты, являются не менее важными, чем первоначальная стоимость. Очень часто можно видеть, как электростанция с более дорогими запасными частями «проедает» всё своё преимущество, достигнутое за счет меньшей цены, всего лишь за первый год эксплуатации. Если же производитель не предоставляет подробных затрат на сервис, вместе с подробной программой обслуживания, то это должно вызывать определённую настороженность у квалифицированных сотрудников, проводящих технико-экономическое сравнение.
- Стоимость запасных частей, включая НДС и таможенную очистку
- Затраты на регулярную смену масла*
- Затраты на угар масла **
- Затраты на работы обслуживающего персонала ***
* Следует помнить, что некоторые производители лукавят, указывая максимальный интервал замены масла, который в реальности будет снижен в полтора-два раза.
** Количества масла на угар варьируется, в среднем, от 0,2 до 0,5 гр./кВт*ч для импортный производителей.
*** Самостоятельное обслуживание газопоршневой электростанции может обойтись значительно дороже, чем периодическое привлечение профессионального персонала за счет того, что самостоятельное обслуживание требует не только обучения на заводе-изготовителе, получения допусков и обладания программным обеспечением, но и покупки дорогостоящего специализированного инструмента (в том числе, дорогостоящие газоанализаторы, мультиметры, осциллографы, пирометры и т.д.).
Газопоршневые двигатели – конструкция и принцип работы
Газопоршневый двигатель – это двигатель внутреннего сгорания с системой внешнего образования топливно-воздушной смеси и искровым зажиганием. В качестве топлива использует природный магистральный газ и др. виды газового топлива, что обеспечивает экономичность, высокий ресурс работы и минимальный уровень шума. В данной статье мы рассмотрим, что представляет собой газопоршневый двигатель, принцип работы и его особенности.
Основные элементы и принцип работы газопоршневого двигателя
Как и у любого ДВС, у газопоршневого двигателя принцип действия основан на сгорании топливовоздушной смеси и поступательном движении поршней за счет энергии расширяющихся газов. С помощью кривошипно-шатунного механизма поступательное движение поршней преобразуется во вращательный выходного вала двигателя.В схеме подачи газа в газопоршневых двигателях основную роль играет газораспределительный механизм, подача газа осуществляется из магистрали или баллонного оборудования.
Чаще всего данный вид двигателей применяется в качестве основного элемента электрогенератора. Так, современные газопоршневые электростанции, характеристики потребления топлива которых делают их наиболее выгодными из всех решений автономного энергообеспечения. Дополнительным преимуществом является возможность выработки тепла или холода для хозяйственных нужд – когенерации и тригенерации. Современный газопоршневой двигатель, принцип работы которого позволяет обеспечить и одновременную тригенерацию, делает оптимальным его применение в приводе холодильной установки. Также применяются они в насосном оборудовании, морском судостроении и др. сферах деятельности.
Особенности газопоршневого двигателя
Наибольшие значения мощности газопоршневых двигателей достигают десятков мегаватт, что достаточно для обеспечения работы мощного оборудования и автономного энергообеспечения производственных и строительных объектов. Важным преимуществом является высокий ресурс работы, достигающий 250 тысяч часов при 80-100 тыс. часов межремонтного интервала (между капитальными ремонтами).
Подача газа в газопоршневых двигателях может быть баллонной или магистральной, а в качестве топлива, помимо метана, применяется:
- пропан;
- бутан;
- коксовый и другие сопутствующие промышленные газы;
- древесный газ;
- газы нефтяной промышленности и многие другие виды.
При этом схема подачи газа в газопоршневых двигателях не требует наличия дожимного компрессора благодаря малому потребному давлению. Благодаря большому выбору вариантов можно гибко использовать оборудование на различных объектах, оперативно адаптировать систему к изменению технических или экономических условий. Перенастройка системы подачи топлива занимает минимум времени, газопоршневый двигатель можно свободно настроить на эксплуатацию на попутном газе, биогазе и др. топливе.
К основным особенностям газопоршневых двигателей можно отнести:
- Небольшую зависимость КПД от окружающей температуры.
- Незначительные колебания КПД при снижении нагрузки на 50% и, соответственно, эффективное использование двигателя при любых нагрузках.
- Малые затраты на эксплуатацию.
- Неограниченное количество запусков мотора.
- Возможность параллельного подключения нескольких двигателей и, соответственно, возможность значительного повышения и рационального использования мощности системы.
С каждым годом газопоршневые двигатели получают всё большее применение в различных сферах, в т. ч. в качестве основного элемента газоэлектростанций для коттеджных поселков. Их экономичность и эксплуатационные обеспечивают им солидные преимущества в сравнении с другими вариантами автономного, резервного или аварийного электроснабжения различных объектов.
Газопоршневые электростанции: принцип работы и область применения
Газопоршневой двигатель внутреннего сгорания благодаря компактным габаритам и широкому диапазону выходных мощностей идеально подходит для электрогенераторов, предназначенных для организации автономного основного, резервного или аварийного электропитания жилых, строительных и производственных объектов. Газопоршневые электростанции (ГПЭС), работающие на базе газопоршневого ДВСА, являются комплектными генерирующими агрегатами, которые вырабатывают не только электрическую, но и тепловую энергию.
Виды газопоршневых генераторов
В зависимости от рабочего режима и видов вырабатываемой энергии ГПЭС делят на 2 типа:
- Когенерационные. Такие станции вырабатывают два вида энергии – электрическую и тепловую. Это наиболее распространенные устройства, общее КПД которых составляет до 90 %.
- Тригенерационные. Эти агрегаты помимо электроэнергии и тепла вырабатывают холод. В холодное время года их используют для отопления помещений, а в теплое – для их кондиционирования.
Для бесперебойного функционирования газопоршневой электростанции могут использоваться следующие виды топлива:
- газы, при сгорании которых выделяется значительное количество тепла, – пропан, бутан, факельный газ;
- природный магистральный, сжиженный газ;
- газ с малым содержанием метана и низкими детонационными характеристиками;
- попутный нефтяной газ;
- промышленные газы – коксовый, пиролизный, шахтный.
Особенности конструкции ГПЭС на базе газопоршневых двигателей внутреннего сгорания
Поршневые газогенераторы могут иметь открытое исполнение, при котором все узлы агрегата расположены на раме, или закрытое, которое предполагает наличие всепогодного шумозащитного кожуха.
Бесперебойную и безопасную работу ГПЭС обеспечивает комплекс инженерных систем: снабжения топливом и маслом, удаления дыма, вентиляции, утилизации тепловой энергии, электромеханики, связи, автоматики, контроля, сигнализации.
Принцип работы газопоршневых электростанций
ГПЭС когенерационного типа функционируют по следующему принципу:
- Топливо поступает в цилиндрическую камеру сгорания, в которой оно сжимается поршнем и воспламеняется.
- Энергия, выделяемая при сгорании топлива, приводит в движение коленвал газопоршневого ДВС. Цикл работы ДВС обычно четырехтактный.
- Вращающийся коленвал передает движение через специальную муфту генератору электрического тока. При вращении ротора с обмоткой в магнитном поле статора происходит выработка электроэнергии.
- Выработанная электроэнергия поступает через кабельные линии на генераторное распределительное устройство (генераторную ячейку).
- Во время выработки электроэнергии высвобождается значительное количество тепла, которое снимается с дымовых газов и нагретого масла с помощью теплообменников и котлов-утилизаторов. Вода, нагретая за счет этого тепла, циркулирует по замкнутому контуру и выполняет функции теплоносителя в отопительной системе объекта. Неиспользованное попутное тепло сбрасывают в атмосферу.
Высококачественные газопоршневые электростанции, при работе которых используются турбонаддув и двухступенчатое охлаждение, имеют электрический КПД около 45 %. На 1 кВт вырабатываемой электроэнергии затрачивается всего 0,22 м 3 газа.
Преимущества использования ГПЭС
Популярность генерирующих агрегатов на основе газопоршневых ДВС обеспечивают следующие эксплуатационные преимущества:
- высокий коэффициент полезного действия, минимальное количество сопутствующих энергопотерь;
- сохранение рабочих характеристик в неблагоприятных условиях окружающей среды, при резких температурных перепадах;
- экологичность – работа газопоршневых электрогенераторов сопровождается малым количеством вредных выбросов;
- наличие автоматизированной системы, защищающей агрегат от перегрева, и других защит;
- длительный эксплуатационный период.
Установка ГПЭС, подобранной под конкретные характеристики объекта, позволяет значительно снизить затраты на его энергоснабжение. Компактные характеристики этих установок и экологичность позволяют устанавливать их на обслуживаемом объекте или в непосредственной близости от него, благодаря чему отпадает необходимость в устройстве дорогостоящих опор, прокладке линий электропередач, использовании мощных трансформаторов.
Сферы применения газопоршневых электростанций
Благодаря комплексной выработке электрической и тепловой энергии, ГПЭС широко используются в отдаленных районах, в которые сложно провести коммуникационные системы, области их применения:
- жилищно-коммунальное хозяйство;
- промышленные предприятия;
- предприятия по добыча угля, нефти и газа;
- насосные станции, котельные;
- в качестве резервного и аварийного энергетического оборудования – медицинские учреждения, аэропорты и другие объекты, в которых важны бесперебойность электропитания.
Агрегаты комплексной выработки тепловой и электрической экономически выгодно устанавливать в торговых комплексах и на других коммерческих объектах, в общественных учреждениях.