Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Соленоид АКПП: назначение, устройство и замена своими руками

Соленоид АКПП: назначение, устройство и замена своими руками

АКПП любой формации представляет собой достаточно сложный механизм, просто изобилующий разного рода деталями. Одни из них являются лишь вспомогательными в работе устройства, а другие – настоящей основой. Именно к категории последних относятся соленоиды, отвечающие за переключение передач и управление режимами коробки. Более подробно о принципах функционирования и общей концепции данных элементов АКПП поговорим сегодня. Интересно? Тогда обязательно ознакомьтесь с приведённой ниже статьёй.

Устройство и принцип работы соленоидов АКПП

Соленоид АКПП – это специальное устройство, которое отвечает за движение масла внутри гидроблочного механизма. Управляется оно электронным блоком управления АКПП и, по сути, представляет собой обычный электромеханический клапан. Именно соленоиды стали наиболее распространёнными «управленцами» переключения передач и режимов работы в современных автоматических коробках передач. Если в роботизированных и вариаторных КПП заменить данные узлы чем-то возможно, то вот в гидравлических АКПП они стали основой управления, поэтому вряд ли будут вытеснены в течение ближайших десятилетий.

Стоит отметить, что соленоид в коробке переключения передач далеко не один – их множество, которые зачастую объединены в целые блоки. Ранее функции контроля движения масла по каналам АКПП возлагались на механические клапанные механизмы, однако развитие автомобильной электроники спровоцировало замену таких устройств на более удобные соленоиды. Если быть точнее, то первый соленоид был установлен в конструкцию автомата лишь в середине 80-х годов в США, после чего получил широкое распространение в этой сфере применения.

Повторимся, любой соленоид – это электромеханическое устройство, которое, честно говоря, очень простое по своей конструкции. Основная функция данного механизма заключается в перекрытии подачи масла по тому или иному каналу АКПП посредством его запирания специальным стержнем. Последний, к слову, выполнен из металла и попросту скользит в проводящей ток спирали (электричество в ней течёт постоянно, пока заведён мотор автомобиля). Нарастание тока движет стержень к концу спирали, то есть запирает канал подачи масла, снижение – к его началу, соответственно, усиливая подачу смазки. Движение стержня любого соленоида организовано при помощи специальных механизмов – запирающих и возвратных пружин.

Все соленоиды АКПП собраны в её элементе под названием «гидроблок» (в народе – блок соленоидов). Гидроблок, к слову, представляет собой плиту, разделённую на многочисленные каналы и имеющую в конструкции множество датчиков, клапанов. Такая организация позволяет автомату осуществлять возложенные на него обязанности, которые заключаются в автоматическом переключении передач. Соленоиды в этой системе играют немаловажную роль и находятся под управлением ЭБУ, направляющем им сигналы по открытию или закрытию конкретного канала гидроблока.

Виды соленоидов

Как стало ясно из предыдущего пункта статьи, управление АКПП без соленоидов представить сложно. В зависимости от того, по какому принципу работают данные механизмы, принято выделять несколько поколений установок. На сегодняшний день выделяются три основных вида соленоидов:

  • Первый – стандартный электромеханический клапан, работающий по принципу «полностью отрыть канал подачи масла или же полностью закрыть его». Соответственно, при открытом положении такого соленоида по каналу гидроблока свободно протекает трансмиссионная жидкость, а при закрытом — масло не течёт;
  • Второй – соленоид, представленный электромагнитным клапаном. Такие механизмы одно время были очень популярны в сфере автомобилестроения, так как могли точно организовать работу АКПП. Несмотря на это, низкая надёжность электромагнитных соленоидов сильно подорвала их популярность, поэтому в масштабном автомобилестроении они практически не используются. Главная фишка данных устройств заключается в том, что стержень может не только полностью открыть или закрыть канал подачи масла, но и сделать это частично, мягко регулируя подачу трансмиссионной жидкости;
  • Третий – соленоид, представленный усовершенствованным электромагнитным клапаном. Данный механизм имеет в своей конструкции не просто запирающий/открывающий канал стержень, а тонко работающий гидравлический клапан. Работа подобных соленоидов основана на том, что контроль движения масла осуществляется при помощи шарового клапана. По сути, такое устройство позволяет организовать тонкую настройку работы АКПП, но при этом является заметно надёжней второго типа соленоидов, поэтому во время своего появления получило широкое применение. Более того, новейшие соленоиды имеют в конструкции фильтрующий элемент, который при пропускании через него трансмиссионной жидкости отсеивает лишний мусор и существенно продлевает срок службы коробки.

С течением времени конструкция автомата становилась всё более и более сложной, поэтому усложнялись и принципы работы соленоидов АКПП, из-за чего они подвергались усиленной модернизации. Основные совершенствования касались того, чтобы переложить на клапан дополнительные функции по типу сброса давления в конкретном блоке сцепления коробки или заблокировать муфту гидротрансформатора.

Типы соленоидов в современных коробках

Идеи автомобильных инженеров позволили достичь подобных задач. Теперь многочисленные типы соленоидов не только отвечают за переключение передач, но и тонко управляют режимами работы АКПП. Сегодня стандартный автомат имеет в конструкции 6 типов соленоидов:

  • Соленоид EPC-формации или клапан линейного давления. Данный соленоид является важнейшим в конструкции АКПП и всегда стоит в гидроблоке первым. Основной функцией линейного соленоида является контроль подачи масла в конкретный канал. Нагрузка на данный механизм высока, поэтому он ломается чаще всего и подлежит первоочередной проверке;
  • Соленоид TCC-формации или клапан, блокирующий муфту гидротрансформатора. Данное устройство, как правило, включается при работе мотора на высоких оборотах и частично отвечает за повышение КПД мотора. При «слабой» езде этот соленоид не работает;
  • Соленоид Shift-формации или клапан-шифтовик. Располагается за линейным клапаном, имеет сложную структуру и выполняет важнейшую функцию всего гидроблока – переключает передачи посредством отточенной подачи трансмиссионной жидкости по соответствующим каналам;
  • Управляющий соленоид. Пожалуй, наиболее простое устройство во всём гидроблоке, ибо имеет лишь одну несложную функцию – контроль за работой всех остальных соленоидов. Функционирование управляющего клапана очень схоже с тем, как работает транзистор любой микросхемы;
  • Соленоид проскальзывания. Подобный клапан организует плавность перехода с одной передачи на другую, то есть, переводя работу автомата в режим проскальзывания;
  • Соленоид охлаждения. Этот же механизм пускает нагретое масло АКПП в отделы охлаждения, что необходимо для стабильной работы коробки.

Важно понимать, что для каждой пары сцепления (передачи) имеется не один соленоид, а сразу несколько из отмеченных выше. Стабильная и беспроблемная работа АКПП возможна лишь при нормальной работе всех клапанов гидроблока, поэтому относиться к ним нужно с должным уровнем ответственности.

О неисправностях соленоидов АКПП и их ремонте

Неисправный соленоид – это одна из главных причин некорректной работы и перехода АКПП в аварийный режим. Несмотря на высокую надёжность современных клапанов гидроблока, по своей сущности эти устройства являются расходниками, поэтому требуют периодической замены. Если ситуация не слишком запущена, проблему может решить обычная замена масла в АКПП. Поменять соленоид вполне можно собственноручно, однако прежде всего важно диагностировать его неисправность.

Читать еще:  Двигатель 110 кубов сколько масла

Для проверки любого клапана гидроблочной плиты придётся осуществлять его «прозвонку». Необходимо это по одной простой причине: неисправный соленоид теряет нормальное для себя сопротивление, если быть точнее, оно повышается. Как проверить соленоид? Очень просто, процедура диагностики клапанов не представляет собой ничего сложного и заключается в исполнении следующих операций:

  1. Снимите гидроблок с коробки, который зачастую располагается на днище узла, реже – сбоку;
  2. Отсоедините контакты каждого соленоида от соответствующих разъёмов блока управления;
  3. Прозвоните каждый клапан. Норма сопротивления на его конках определяется для каждого типа в индивидуальном порядке. Так, например, для соленоидов EV-1 норма сопротивления находится в пределах 65-66 Ом (при 20 градусах по Цельсию). Для других клапанов нормальные показатели, соответственно, свои.

Примечание! На современных коробках имеются функции самодиагностики, поэтому для определения того, какой именно соленоид неисправен, достаточно подключиться к бортовому компьютеру автомобиля. Если подобная мера не возможна, то придётся проводить диагностику традиционным «прозвоном» своими руками, после чего уже ремонтировать нужный элемент узла.

Допустим, неисправный клапан выявлен – что требуется дальше? Естественно, ремонт соленоида или их группы. К сожалению, разобрать клапан, промыть его и собрать обратно не выйдет, придётся полностью менять элемент гидроблока. Стоимость его не особо высока, поэтому бояться процедуры ремонта не стоит. Зачастую замена соленоидов в АКПП проводится так:

  1. Гидроблок снимается с коробки;
  2. От клапана отсоединяются все разъёмы;
  3. Откручивают крепления соленоида, и он снимается с гидроблока;
  4. После этого на место старого клапана устанавливается новый, к нему присоединяются все разъёмы;
  5. Затем гидроблок устанавливается обратно на КПП. Ремонт окончен.

Как видите, особых сложностей в устройстве соленоидов автомата и их ремонте нет. Разобраться и с тем, и с другим вполне поможет представленный сегодня материал. Надеемся, он был для вас полезен и дал ответы на интересующие вопросы. Удачи на дорогах и в ремонте авто!

Соленоидный двигатель

Современные инженеры регулярно проводят эксперименты по созданию устройств с нестандартной конструкцией, таких как, например, аппарат вращения на неодимовых магнитах. Среди этих механизмов следует отметить и соленоидный двигатель, преобразующий энергию электрического тока в механическую энергию.

  1. Соленоидный двигатель принцип работы
  2. Устройство соленоидного двигателя
  3. Соленоидный двигатель своими руками
  4. Как сделать соленоидный двигатель в домашних условиях

Соленоидный двигатель принцип работы

Соленоидные двигатели могут состоять из одной или нескольких катушек – соленоидов. В первом случае задействована всего лишь одна катушка, при включении и выключении которой происходит механическое движение кривошипно-шатунного механизма. Во втором варианте используется несколько катушек, включающихся поочередно с помощью вентилей, когда подача тока от источника питания осуществляется в один из полупериодов синусоидального напряжения. Возвратно-поступательные движения сердечников приводят в движение колесо или коленчатый вал.

В соответствии с основной классификацией, соленоидные двигатели бывают резонансными и нерезонансными. В свою очередь, существует однокатушечная и многокатушечная конструкции нерезонансных двигателей. Известны также параметрические двигатели, в которых сердечник втягивается в соленоид, но занимает нужное положение при достижении магнитного равновесия после нескольких колебаний. При совпадении частоты сети с собственными колебаниями сердечника может произойти резонанс.

Соленоидные двигатели отличаются компактностью и простотой конструкции. Среди недостатков следует отметить низкий коэффициент полезного действия этих устройств и высокую скорость движения. До настоящего времени эти недостатки не удалось преодолеть, поэтому данные механизмы не нашли широкого применения на практике.

Рабочая катушка однокатушечных устройств включается и выключается с помощью механического выключателя, за счет действия тела сердечника или полупроводниковым вентилем. В обоих вариантах обратный ход обеспечивается пружиной, обладающей упругостью. В двигателях с несколькими катушками рабочие органы включаются только вентилями, когда к каждой катушке по очереди подводится ток в промежутке одного из полупериодов синусоидального напряжения. Сердечники катушек начинают поочередно втягиваться, в результате, это приводит к совершению возвратно-поступательных движений. Эти движения через приводы передаются на различные двигатели, выполняющие функцию исполнительных механизмов.

Устройство соленоидного двигателя

Существуют различные типы механических и электрических устройств, работа которых основывается на преобразовании одного вида энергии в другой. Их основные типы широко используются во всех машинах и механизмах, применяемых на производстве и в быту. Существуют и нетрадиционные аппараты, работа над которыми осуществляется пока на уровне экспериментов. К ним можно отнести и соленоидные двигатели, работающие на основе магнитного действия тока. Его основным преимуществом считается простота конструкции и доступность материалов для изготовления.

Основным элементом данного устройства является катушка, по которой пропускается электрический ток. Это приводит к образованию магнитного поля, втягивающего внутрь плунжер, выполненный в виде стального сердечника. Далее, с помощью кривошипно-шатунного механизма, поступательные движения сердечника преобразуются во вращательное движение вала. Можно использовать любое количество катушек, однако, наиболее оптимальным считается вариант с двумя элементами. Все эти факторы нужно обязательно учитывать при решении вопроса как сделать соленоидный двигатель своими руками из подручных материалов.

Нередко рассматривается вариант с тремя катушками, отличающийся более сложной конструкцией. Тем не менее, он обладает более высокой мощностью и работает значительно равномернее, не требуя маховика для плавности хода.

Работа данного устройства осуществляется следующим образом.

  • Из электрической сети ток попадает на распределитель через щетку соленоида, после чего поступает уже непосредственно в этот соленоид.
  • После прохождения по обмотке, ток вновь возвращается в сеть через общие кольца и щетку, установленные в распределителе. Прохождение тока приводит к образованию сильного магнитного поля, втягивающего плунжер внутрь катушки к ее середине.
  • Далее поступательное движение плунжера передается шатуну и кривошипу, осуществляющих поворот коленчатого вала. Одновременно с валом происходит поворот распределителя тока, запускающего в действие следующий соленоид.
  • Второй соленоид начинает действовать еще до окончания работы первого элемента. Таким образом, он оказывает помощь при ослаблении тяги плунжера первого соленоида, поскольку уменьшается длина его плеча в процессе поворота кривошипа.
  • После второго соленоида в работу включается следующая – третья катушка и весь цикл полностью повторяется.
Читать еще:  Гильзовать двигатель что это такое

Соленоидный двигатель своими руками

Лучшим материалом для катушек считается текстолит или древесина твердых пород. Для намотки используется провод ПЭЛ-1 диаметром 0,2-0,3 мм. Наматывание выполняется в количестве 8-10 тыс. витков, обеспечивая сопротивление каждой катушки в пределах 200-400 Ом. После намотки каждых 500 витков делаются тонкие бумажные прокладки и так до окончательного заполнения каркаса.

Для изготовления плунжера применяется мягкая сталь. Шатуны могут быть изготовлены из велосипедных спиц. Верхнюю головку нужно делать в виде небольшого кольцеобразного ушка с необходимым внутренним диаметром. Нижняя головка оборудуется специальным захватом для крепления на шейке коленчатого вала. Он изготавливается из двух жестяных полосок и представляет собой вилку, которая надевается на шейку кривошипа. Окончательное крепление вилки осуществляется медной проволокой, продеваемой через отверстия. Шатунная вилка надевается на втулку, выполненную из медной, бронзовой или латунной трубки.

Коленчатый вал делается из металлического стержня. Его кривошипы располагаются под углом 120 градусов относительно друг друга. На одной стороне коленчатого вала закрепляется распределитель тока, а на другой – маховик в виде шкива с канавкой под приводной ремень.

Для изготовления распределителя тока можно использовать латунное кольцо или отрезок трубки подходящего диаметра. Получается одно целое кольцо и три полукольца, расположенные по отношению друг к другу со сдвигом на 120 градусов. Щетки делаются из пружинных пластинок или слегка расклепанной стальной проволоки.

Крепление втулки распределителя тока производится на текстолитовый валик, надеваемый на один из концов коленчатого вала. Все крепления осуществляются с помощью клея БФ и шпонок, изготавливаемых из тонкой проволоки или иголок. Установка распределителя выполняется таким образом, чтобы включение первой катушки происходило при нахождении плунжера в самом нижнем положении. Если провода, идущие от катушек на щетки, поменять местами, то вращение вала будет происходить в обратном направлении.

Установка катушек производится в вертикальном положении. Они закрепляются разными способами, например, деревянными планками, в которых предусмотрены углубления под корпуса катушек. По краям крепятся боковины из фанеры или листового металла, в которых предусмотрены места под установку подшипников под коленчатый вал или латунных втулок. При наличии металлических боковин, крепление втулок или подшипников производится методом пайки. Подшипники рекомендуется устанавливать и в средней части коленчатого вала. С этой целью предусматриваются специальные жестяные или деревянные стойки.

Во избежание сдвига коленчатого вала в ту или иную сторону на его концы рекомендуется припаять кольца из медной проволоки, на расстоянии примерно 0,5 мм от подшипников. Сам двигатель должен быть защищен жестяным или фанерным кожухом. Расчеты двигателя выполняются исходя из переменного электрического тока, напряжением 220 вольт. В случае необходимости устройство может функционировать и при постоянном токе. Если же сетевое напряжение составляет всего 127 вольт, количество витков катушки следует снизить на 4-5 тысяч витков, а сечение провода уменьшить до 0,4 мм. При условии правильной сборки, мощность соленоидного двигателя составит в среднем 30-50 Вт.

Проверяем электромагнитный клапан своими руками

  • Проверяем электромагнитный клапан своими руками
  • Зачем машине клапан холостого хода?
  • Как подключить электромагнитный клапан?
  • Каким образом нужно проверять электромагнитный клапан
  • Что делать, если перегорел электромагнитный клапан?

Во всех современных автомобилях, независимо от типа мотора, есть система холостого хода. При полностью закрытой дроссельной заслонке акселератора эта система обеспечивает стабильную работу мотора на холостых оборотах. Основным компонентом системы служит электромагнитный клапан холостого хода. Существуют и другие наименования, такие как «электропневмоклапан», «электромагнитный клапан», «регулятор холостого хода».

  • Зачем машине клапан холостого хода?
  • Как подключить электромагнитный клапан?
  • Каким образом нужно проверять электромагнитный клапан
  • Что делать, если перегорел электромагнитный клапан?

Зачем машине клапан холостого хода?

Электромагнитный клапан необходим для обеспечения подачи топливно-воздушной смеси во входной коллектор двигателя по отдельному дополнительному каналу холостого хода в обход дроссельной заслонки, управляемой педалью газа.

В зависимости от того, какой тип двигателя в автомобиле, клапан холостого хода контролирует подачу топлива или воздуха. При карбюраторном и дизельном моторе он обеспечивает подачу топлива во входной коллектор, которое нужно для постоянной работы мотора на холостых ходах. При бензиновом инжекторном моторе он управляет подачей необходимого количества воздуха.

Как подключить электромагнитный клапан?

Схема соединений системы управления клапаном холостого хода карбюратора приведена ниже.

1 – выключатель зажигания;

2 – реле зажигания;

3 – катушка зажигания;

4 – управляющий блок;

5 – клапан холостого хода;

6 – концевой выключатель карбюратора.

Каким образом нужно проверять электромагнитный клапан

Чтобы определить, исправен клапан или нет, нужно включить зажигание и снять с него провод питания, после чего пару раз притронуться снятым проводом питания к клемме электромагнитного клапана.

При этом могут возникнуть две ситуации:

Первый случай – это появление щелчков (что говорит об исправности клапана). Из корпуса карбюратора выворачиваем клапан холостого хода. Достаем топливный жиклер холостого хода из клапана. Осматриваем центральный проход жиклера, убираем имеющийся на нем мусор и продуваем его. Чтобы удостовериться, что отверстие чистое, смотрим сквозь него на просвет. Затем производим все выполненные действия в обратном порядке. Устанавливаем топливный жиклер, потом ставим клапан назад и заворачиваем. Провод питания надеваем назад на клемму и запускаем мотор.

Второй случай – если щелчков не последовало. Из корпуса карбюратора выворачиваем электромагнитный клапан. Собираем простую схему. Применяя лишний кусочек провода, подайте «+» от аккумулятора на клемму клапана. Его корпусом пару раз притроньтесь к «массе» либо клемме «-» аккумулятора. В случае отсутствия загорания лампы и щелчков, электромагнитный клапан считается перегоревшим. Нужно заменить его на новый и проверить таким же способом.

Читать еще:  Эфир для запуска двигателя мотоцикла

Примечание. Существует упрощенный метод проверки. Для этого проводом от клеммы «+» аккумулятора притрагиваемся к клемме электромагнитного клапана, а его корпус подносим к «массе». Клапан считается перегоревшим при отсутствии щелчка. В работающем клапане сердечник с запорной иглой должен плотно, со щелчком входить в обмотку, если напряжение не больше 9 В. Если щелчок был, но нечеткий, то нужно почистить сердечник от загрязнений и проверить сопротивление обмотки электромагнита. Нормальным сопротивление считается от 150 до 216 Ом при температуре воздуха 20°С. Если сопротивление не вписывается в эти рамки, то клапан нужно менять.

Что делать, если перегорел электромагнитный клапан?

Чтобы доехать до любого автомобильного рынка или магазина, можно временно превратить поломанный клапан холостого хода в принудительно открытый. Сначала снимаем топливный жиклер холостого хода, отламываем пластиковый наконечник клапана и устанавливаем жиклер назад. Устанавливаем клапан на место и заворачиваем его. Надеваем провод питания и запускаем мотор.

Важно знать, что при передвижении автомобиля с таким клапаном могут появиться проблемы при выключении двигателя. Поэтому глушить его сразу не стоит, а дать поработать на холостых оборотах приблизительно пять минут, после чего выключить зажигание и плавно нажать на педаль газа до упора.

Если при проверке электромагнитного клапана щелчки присутствуют, однако есть проблемы с холостым ходом, тогда стоит провести следующие действия. Ставим клапан на свое место. Нужно включить зажигание и проверить напряжение питания на клемме провода «+», идущего к клапану, тестером либо контрольной лампочкой. Если нет напряжения и не загорается лампа, то случился обрыв в цепи питания электромагнитного клапана.

Важно! Если вам нужно приехать в сервис либо гараж при обрыве цепи питания клапана, то нужно соединить кусочком провода клемму клапана с выводом «+» аккумулятора. И после того как вы прибыли в точку назначения, провод нужно отсоединить.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Электромагнитные клапаны для воды

Электромагнитный (соленоидный) клапан – устройство, устанавливаемое в трубопроводной системе, позволяющее регулировать подачу жидкой или газообразной среды в системе посредством управляющего электрического сигнала.

Модельный ряд электромагнитных клапанов для воды

МодельДиаметрРезьбаПропускная
способность
Давление до 7 бар, исполнение НЗ, рабочая температура 0…+65°С
напряжение катушки 220В AC, 24В AC, 24В DC, 12В DC
SF62321DN10G ⅜»4,86 м 3 /ч
SF62322DN15G ½»5,04 м 3 /ч
SF62323DN20G ¾»8,57 м 3 /ч
SF62324DN25G 1″12,54 м 3 /ч
SF62325DN32G 1¼»23,12 м 3 /ч
SF62326DN40G 1½»31,59 м 3 /ч
Давление до 10 бар, исполнение НЗ, рабочая температура 0…+80°С
напряжение катушки 220В AC, 24В AC, 24В DC, 12В DC
SF62522DN15G ½»5,22 м 3 /ч
SF62523DN20G ¾»8,82 м 3 /ч
SF62524DN25G 1″13,92 м 3 /ч
Давление до 10 бар, исполнение НО, рабочая температура 0…+80°С
напряжение катушки 220В AC, 24В AC, 24В DC, 12В DC
SF62542DN15G ½»5,22 м 3 /ч
SF62543DN20G ¾»8,82 м 3 /ч
SF62544DN25G 1″13,92 м 3 /ч
Давление до 16 бар, исполнение НЗ, рабочая температура -20…+130°С
напряжение катушки 220В AC, 110В AC, 24В AC, 24В DC, 12В DC
SG55324DN15G ½»5,22 м 3 /ч
SG55325DN20G ¾»8,82 м 3 /ч
SG55326DN25G 1″13,92 м 3 /ч
SG55327DN32G 1¼»25,52 м 3 /ч
SG55328DN40G 1½»34,80 м 3 /ч
SG55329DN50G 2″55,68 м 3 /ч
Давление до 16 бар, исполнение НО, рабочая температура -20…+130°С
напряжение катушки 220В AC, 110В AC, 24В AC, 24В DC, 12В DC
SG55344DN15G ½»5,22 м 3 /ч
SG55345DN20G ¾»8,82 м 3 /ч
SG55346DN25G 1″13,92 м 3 /ч
SG55347DN32G 1¼»25,52 м 3 /ч
SG55348DN40G 1½»34,80 м 3 /ч
SG55349DN50G 2″55,68 м 3 /ч

Состав электромагнитных клапанов

Конструктивно электромагнитный клапан содержит следующие основные элементы:

  • Корпус и крышка. Выполняются из латуни, полимеров, чугуна, нержавеющих сталей – для условий различных сред и температур.
  • Детали уплотнения, мембраны. Изготавливаются из специальных видов каучуков и резины, фторопластов.
  • Подвижные детали, являющиеся элементами сердечника соленоида. Изготавливаются из материалов с магнитными свойствами.
  • Электрическая катушка, выполняется медным эмальпроводом и герметизирована.

Разновидности электромагнитных клапанов

Физически работа электромагнитного клапана состоит в перекрытии проходного отверстия в корпусе клапана мембраной под воздействием перемещения сердечника и связанных с ним деталей при поступлении напряжения на обмотку катушки. Различают два типа клапанов – прямого действия и пилотные. Первые применяются в основном для трубопроводов небольшого расхода. В них перекрытие или открывание отверстия осуществляется непосредственно за счет электромагнитного усилия соленоида, преодолевающего сопротивление возвратной пружины. В клапанах пилотного действия срабатывание происходит за счет энергии потока жидкости в трубопроводе, перенаправляемом при перекрытии или открывании перепускных (пилотных) отверстий после подачи напряжения на соленоид. Такие клапаны применяются в трубопроводах большого расхода и требуют наличия в магистрали некоторого минимального напора (давления), как правило, порядка 0,2 атм.

По логике работы электромагнитные клапаны делятся на нормально открытые, нормально закрытые и переключающиеся – переходящие в другое положение при каждой новой подаче напряжения на катушку. Обмотки катушек рассчитаны на питание различным постоянным или переменным напряжением.

Для трубопроводов небольших диаметров в основном используется резьбовое присоединение клапанов, для больших диаметров используется фланцевое присоединение и приварное.

По характеру функционирования электромагнитные клапаны бывают одноходовыми, двухходовыми, трех- и четырехходовыми. Последние два варианта используются в трубопроводных системах как разделительные и смесительные.

Существуют также специальные взрывозащищенные конструкции для особых условий.

Ссылка на основную публикацию
Adblock
detector