Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема подключения трёхфазного электродвигателя

Схема подключения трёхфазного электродвигателя

    Дмитрий Жемчужников 4 лет назад Просмотров:

1 Предлагаем Конденсаторы пусковые, рабочие ЭЛЕКТРОННЫЕ КОМПОНЕНТЫ ( радиодетали ) СО СКЛАДА И ПОД ЗАКАЗ продажа в Минске Беларусь тел.8(017) e:mail Техническая информация datasheet pdf техническая документация технические характеристики описание фото рисунок маркировка габариты размер параметры применение аналог замена Схема подключения трёхфазного электродвигателя Типовая схема подключения трёхфазного электродвигателя состоит из самого электродвигателя, магнитного пускателя и защиты от сверхтоков (автоматический выключатель — автомат). Схемы подключения могут быть разными, в зависимости от магнитного пускателя, точнее от рабочего напряжения его катушки К 220 в или 380 в, от наличия теплового реле, которое подключается последовательно с катушкой пускателя. Превышения тока, потребляемого электродвигателем вызывает размыкание контактов теплового реле, что приводит к обесточиванию катушки и отключению электродвигателя. Схема подключения трёхфазного электродвигателя Обозначения: 1 — выключатель автоматический (3х-полюсный автомат), 2 — тепловое реле с размыкающими контактами, 3 — группа контактов магнитного пускателя, 4 — катушка магнитного пускателя (в данном случае рабочее напряжение катушки в), 5 — блок-контакт нормально разомкнутый, 6 — кнопка «Пуск», 7 — кнопка «Стоп».

2 Отличие этих схем подключения электродвигателей состоит в использовании разных магнитных пускателей в этих схемах. В первом случае используется магнитный пускатель с рабочим напряжением катушки в; для её питания используется фаза С (можно любую другую) и ноль — N. Во втором случае электродвигатель подключается через магнитный пускатель с катушкой 4 на 380 в. Для её питания используются фазы B и С. Защита электродвигателей. Схема защиты электродвигателя При эксплуатации асинхронных электродвигателей, как и любого другого электрооборудования, могут возникнуть неполадки неисправности, часто приводящие к аварийному режиму работы, повреждению двигателя. преждевременному выходу его из строя. Прежде, чем перейти к способам защиты электродвигателей стоит рассмотреть основные и наиболее частые причины возникновения аварийной работы асинхронных электродвигателей: Однофазные и межфазные короткие замыкания в кабеле, клеммной коробке электродигателя, в обмотке статора (на корпус, межвитковые замыкания). Короткие замыкания наиболее опасный вид неисправности в электродвигателе, т. к. сопровождается возникновением очень больших токов, приводящих к перегреву и сгоранию обмоток статора. Тепловые перегрузки электродвигателя обычно возникают, когда вращение вала сильно затруднено (выход из строя пошипника, попадание мусора в шнек, запуск двигателя под слишком большой нагрузкой, либо его полная остановка). Частой причиной тепловой перегрузки электродвигателя, приводящей к ненормальному режиму работы является пропадание одной из питающих фаз. Это приводит к значительному увеличению тока (в два раза превышающего номинальный) в статорных обмотках двух других фаз. Результат тепловой перегрузки электродвигателя перегрев и разрушение изоляции обмоток статора, приводящее к замыканию обмоток и негодности электродвигателя. Защита электродвигателей от токовых перегрузок заключается в своевременном обесточивании электродвигателя при появлении в его силовой цепи или цепи управления больших токов, т. е. при возникновении коротких замыканий. Для защиты электродвигателей от коротких замыканий применяют плавкие вставки, электромагнитные реле, автоматические выключатели с электромагнитным расцепителем, подобранные таким образом, чтобы они выдерживали большие пусковые сверхтоки, но незамедлительно срабатывали при возникновении токов короткого замыкания. Для защиты электродвигателей от тепловых перегрузок в схему подключения электродвигателя включают тепловое реле, имеющее контакты цепи управления через них подаётся напряжение на катушку магнитного пускателя.

3 При возникновении тепловых перегрузок эти контакты размыкаются, прерывая питание катушки, что приводит к возврату группы силовых контактов в исходное состояние электродвигатель обесточен. Простым и надёжным способом защиты электродвигателя от пропадания фаз будет добавление в схему его подключения дополнительного магнитного пускателя: Включение автоматического выключателя 1 приводит к замыканию цепи питания катушки магнитного пускателя 2 (рабочее напряжение этой катушки должно быть

380 в) и замыканию силовых контактов 3 этого пускателя, через который (используется только один контакт) подаётся питание катушки магнитного пускателя 4. Включением кнопки «Пуск» 6 через кнопку «Стоп» 8 замыкается цепь питания катушки 4 второго магнитного пускателя (её рабочее напряжение может быть как 380 так и 220 в), замыкаются его силовые контакты 5 и на двигатель подаётся напряжение. При отпускании кнопки «Пуск» 6 напряжение с силовых контактов 3 пойдет через нормально разомкнутый блок-контакт 7, обеспечивая неразрывность цепи питания катушки магнитного пускателя. Как видно из этой схемы защиты электродвигателя, при отсутствии по каким-то причинам одной из фаз напряжение на электродвигатель поступать не будет, что предотвратит его от тепловых перегрузок и преждевременный выход из строя. Схемы подключения электродвигателя. Звезда, треугольник, звезда — треугольник Существует два основных способа подключения трёхфазных электродвигателей: подключение звезда и подключение треугольник.

4 При соединении трёхфазного электродвигателя звездой концы его статорных обмоток сводятся вместе, соединяясь в одной точке, а на начала обмоток подаётся питание. При соединении трёхфазного электродвигателя треугольником обмотки статора соединяются последовательно конец одной обмотки соединён с началом следующей. Клеммные колодки электродвигателей и схемы соединения обмоток (рис.2): Не вдаваясь в подробности теоретических основ электротехники можно сказать, что электродвигатели с обмотками, соединёнными звездой работают намного мягче, чем с соединением обмоток в треугольник, однако при соединении обмоток звездой двигатель не способен развить полную мощность. При соединении обмоток треугольником двигатель работает на полную паспортную мощность (примерно в 1,5 раз больше, чем при соединении звездой), но имеет очень большие значения пусковых токов. Поэтому целесообразно (особенно для электродвигателей большой мощности) подключение по схеме звезда треугольник; запуск осуществляется по схеме звезда, после чего (когда электродвигатель «набрал обороты»), происходит автоматическое переключение на схему треугольник. Схема управления:

5 Подключение оперативного напряжения через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3. Включение пускателя К3, размыкает контакт К3 в цепи катушки пускателя К2 (блокировка случайного включения) и замыкает контакт К3, в цепи катушки магнитного пускателя К1 он совмещен с контактами реле времени. При включении пускателя К1 замыкается контакт К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2. Отключение пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. Включение пускателя К2, размыкает контакт К2 в цепи катушки пускателя К3. Из рисунка 3 видно, что когда на начала обмоток 1, 2 и 3 через силовые контакты магнитного пускателя К1 подаётся рабочее напряжение, срабатывает магнитный пускатель К3. Его силовые контакты К3 соединяют концы обмоток 4, 5 и 6 обмотки двигателя соединены звездой. Далее срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2 замыкаются силовые контакты К2 и подаётся напряжение на концы обмоток электродвигателя 4, 5 и 6. Теперь электродвигатель включен по схеме треугольник. Трёхфазный двигатель — в однофазную сеть Пожалуй, наиболее распространённый и простой способ подключения трехфазного электродвигателя в однофазную сеть при отсутствии питающего напряжения

380 в это способ с применением фазосдвигающего конденсатора, через который запитывается третья обмотка электродвигателя. Перед тем, как подключать трехфазный электродвигатель в однофазную сеть убедитесь, что его обмотки соединены «треугольником» (см. рис. ниже, вариант 2), т. к. именно это соединение даст минимальные потери мощности 3х-фазного двигателя при включении его в сеть

220 в. Мощность, развиваемая трехфазным электродвигателем, включенным в однофазную сеть с такой схемой соединения обмоток может составлять до 75% его номинальной мощности. При этом частота вращения двигателя практически не отличается от его частоты при работе в трёхфазном режиме. На рисунке показаны клеммные колодки электродвигателей и соответствующие им схемы соединения обмоток. Однако, исполнение клеммной коробки электродвигателя может отличаться от показанного ниже вместо клеммных колодок, в коробке может располагаться два разделённых пучка проводов (по три в каждом). Эти пучки проводов представляют собой «начала» и «концы» обмоток двигателя. Их необходимо «прозвонить», чтобы разделить обмотки друг от друга и соединить по нужной нам схеме «треугольник» последовательно, когда конец одной обмотки соединяется с началом другой т. д (С1-С6, С2-С4, С3- С5). При включении трёхфазного электродвигателя в однофазную сеть, в схему «треугольник» добавляются пусковой конденсатор Сп, который используется кратковременно (только для запуска) и рабочий

6 конденсатор Ср. В качестве кнопки SB для запуска эл. двигателя небольшой мощности (до 1,5 квт) можно использовать обычную кнопку «ПУСК», применяемую в цепях управления магнитных пускателей. Для двигателей большей мощности стоит заменить её на коммутационный аппарат помощнее — напр, автомат. Единственным неудобством в этом случае будет необходимость ручного отключения конденсатора Сп автоматом после того как электродвигатель наберёт обороты. Таким образом, в схеме реализована возможность двухступенчатого управления электродвигателем, уменьшая общую ёмкость конденсаторов при «разгоне» двигателя. Если мощность двигателя невелика (до 1 квт), то запустить его можно будет и без пускового конденсатора, оставив в схеме лишь рабочий конденсатор Ср. Рассчитать ёмкость рабочего конденсатора можно формулой: С раб = 4800 I / U, мкф для двигателей, включенных в однофазную сеть с соединением обмоток «треугольник». С раб = 2800 I / U, мкф для двигателей, включенных в однофазную сеть с соединением обмоток «звезда». Это наиболее точный способ, требующий, однако, измерения тока в цепи электродвигателя. Зная номинальную мощность двигателя, для определения ёмкости рабочего конденсатора лучше воспользоваться следующей формулой: С раб = 66 Р ном, мкф, где Р ном — номинальная мощность двигателя. Упростив формулу, можно сказать, что для работы трёхфазного электродвигателя в однофазной сети, ёмкость конденсатора на каждые 0,1 квт его мощности должна составлять около 7 мкф. Так, для двигателя мощностью 1,1 квт ёмкость конденсатора должна составлять 77 мкф. Такую ёмкость можно набрать несколькими конденсаторами, соединёнными друг с другом параллельно (общая ёмкость в этом случае будет равна суммарной), используя следующие типы: МБГЧ, К78-17, CBB-60(ИМПОРТ),, К78-17, CBB-60(ИМПОРТ),, БГТ, КГБ с рабочим напряжением, превышающим напряжение в сети в 1,5 раза. Рассчитав ёмкость рабочего конденсатора можно определить ёмкость пускового — она должна превышать ёмкость рабочего в 2-3 раза. Применять конденсаторы для запуска следует тех-же типов, что и рабочие, в крайнем случае и при условии очень кратковременного запуска можно применить электролитические — типов К50-3, КЭ-2, ЭГЦ-М, рассчитанных на напряжение не менее 450 в.

Читать еще:  Hover h3 не заводится двигатель

7 Реверсивная схема подключения электродвигателя — фазировка Эта схема довольно часто используется для подключения трехфазного электродвигателя там, где необходимо оперативное управление направлением вращения вала двигателя например, в гаражных воротах, насосах, различных погрузчиках, кран-балках и т. д. Реверсирование двигателя реализуется изменением фазировки его питающего напряжения. Например, если порядок подключения фаз к клеммам трехфазного электродвигателя условно взять как L1, L2,L3, то направление вращения вала будет определенным, противоположным, чем при подключении, скажем, с фазировкой L3, L2, L1. Особенностью реверсивной схемы подключения является использование в ней двух магнитных пускателей. Причем, их главные силовые контакты соединены между собой таким образом, что при срабатывании катушки одного из пускателей, фазировка питающего напряжения двигателя будет отличаться от фазировки при срабатывании катушки другого. В схеме используется два магнитных пускателя. При срабатывании первого пускателя KM1, его силовые контакты притягиваются (обведены зеленым пунктиром) и на обмотки электродвигателя поступает напряжение с фазировкой L1, L2, L3. При срабатывании второго пускателя КМ2, напряжение на двигатель пойдет через его силовые контакты КМ2 (обведены красным пунктиром) уже будет иметь фазировку L3, L2, L1. Как видите, здесь магнитные пускатели подключены по стандартной схеме. Разве, что, в цепь каждой катушки последовательно включен нормально закрытый блок-контакт другого пускателя. Эта мера предотвратит замыкание в случае ошибочного одновременного нажатия обеих кнопок «Пуск». Предлагаем Конденсаторы пусковые, рабочие ЭЛЕКТРОННЫЕ КОМПОНЕНТЫ ( радиодетали ) СО СКЛАДА И ПОД ЗАКАЗ продажа в Минске Беларусь тел.8(017) e:mail Техническая информация datasheet pdf техническая документация технические характеристики описание фото рисунок маркировка габариты размер параметры применение аналог замена

ЗАПУСК АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ ПО СХЕМЕ «ЗВЕЗДА- ТРЕУГОЛЬНИК» НАМИНАЛОМ 30 квт С ИСПОЛЬЗОВАНИЕМ РЕЛЕ ВРЕМЕНИ FINDER 80.82

ЗАПУСК АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ ПО СХЕМЕ «ЗВЕЗДА- ТРЕУГОЛЬНИК» НАМИНАЛОМ 30 квт С ИСПОЛЬЗОВАНИЕМ РЕЛЕ ВРЕМЕНИ FINDER 80.82 Практически любое производство в наши дни не обходится без мощного асинхронного

Виды электродвигателей и схемы их подключения для 220 и 380 в

Подключение трехфазного двигателя на 380 вольт

Если подать в катушку переменный ток, получим переменное поле.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона.

Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока.

Преимущества инвертора в подключение не переделанных трёхфазных электромашин на вольт; получение полной мощности и момента электромашины без потерь; экономия электроэнергии; плавный запуск и регулировка оборотов. Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе.

Читайте дополнительно: прокладка кабеля в грунте снип

Схема подключения коллекторного электродвигателя на 220 Вольт

Кстати, мотор стиральной машины через конденсатор производится. Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

Другими словами, должно быть два выключателя: один общий, другой — пусковой, который, после его отпускания, отключался бы сам

Поэтому, важно своевременно отпустить пусковую кнопку. Она подключается к основной электрической сети через ёмкость или индуктивность

Использовать конденсаторы для постоянного напряжения в сетях с переменным, крайне не рекомендуется по причине того, что конденсаторы взрываются.

И во многих случаях электрооборудование приводится в движение трехфазными двигателями. Всегда внимательно читайте, что написано на бирке! Теперь двигатель, который был соединен для , можно включать в сеть вольт.

Имеем два вектора взаимно перпендикулярных, меняющихся по синусоидальному закону со сдвигом фаз на 90 градусов. Если в процессе эксплуатации мотор перегревается, то, значит, емкость прибора больше требуемой. Допустим, мы посчитали ёмкость 40 мкФ.
подключение двигателя 380 на 220 вольт

О напряжении в однофазных электродвигателях

Важно помнить о том, что напряжение на пусковой обмотке электродвигателя может быть выше сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы

Изменение напряжения питания

Нужно отметить, что однофазные электродвигатели обычно не используются для больших интервалов напряжения, в отличие от трёхфазных электродвигателей. В связи с этим может возникнуть потребность в двигателях, которые могут работать с другими видами напряжения. Для этого необходимо внести некоторые конструкционные изменения, например, нужна дополнительная обмотка и конденсаторы различной ёмкости. Теоретически, ёмкость конденсатора для различного сетевого напряжения (с одной и той же частотой) должна быть равна квадрату отношения напряжений:

Таким образом, в электродвигателе, рассчитанном на питание от сети в 230 В, используется конденсатор 25µФ/400 В, для модели электродвигателя на 115 В необходим конденсатор ёмкостью 100µФ с маркировкой более низкого напряжения — например 200 В.

Иногда выбирают конденсаторы меньшей ёмкости, например 60µФ. Они дешевле и занимают меньше места. В таких случаях обмотка должна подходить для определённого конденсатора. Нужно учитывать, что производительность электродвигателя при этом будет меньше, чем с конденсатором ёмкостью 100µФ — например, пусковой момент будет ниже.

Однофазные электродвигатели работают по тому же принципу, что и трёхфазные. Однако у них более низкие пусковые моменты и значения напряжения питания (110-240В).

Однофазные электродвигатели не должны работать в режиме холостого хода, многие из них не должны эксплуатироваться при нагрузке меньше 25 % от максимальной, так как это вызывает повышение температуры внутри электродвигателя, что может привести к его поломке.

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

  • Звезда.
  • Треугольник.

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.

Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит.

Читать еще:  Двигатель e13c технические характеристики

Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда.

Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт.

При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Схема звезда-треугольник

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Подключение трехфазного двигателя на 380 вольт

Здесь вообще нет ничего сложного. Есть три фазы, есть три вывода двигателя и рубильник

Нулевую точку (где соединяются три обмотки, началами или концами – как я уже говорил выше, абсолютно неважно, как мы назовём выводы обмоток) при схеме соединения обмоток звездой, подключать к нулевому проводу не надо. То есть, для включения трехфазного двигателя в трехфазную сеть 380 вольт (если двигатель 220/380) нужно соединить обмотки по схеме звезда, и подать на двигатель только три провода с тремя фазами

А если двигатель 380/660 вольт, то схема соединения обмоток будет треугольник, ну а там точно нулевой провод некуда подключать.

Смена направления вращения вала трехфазного двигателя

Независимо от того, будет это конденсаторная схема включения или полноценная трехфазная, для смены вращения вала нужно поменять местами две любые обмотки. Другими словами поменять местами два любых провода.

На чём хочется остановиться более подробно. Когда мы считали ёмкость рабочего конденсатора, то мы использовали номинальный ток двигателя. Проще говоря, такой ток в двигателе будет только тогда, когда он будет полностью нагружен. Чем меньше нагружен двигатель, тем меньше будет ток, поэтому ёмкость рабочего конденсатора, полученная по этой формуле будет МАКСИМАЛЬНО ВОЗМОЖНОЙ ёмкостью для данного двигателя. Чем плохо использовать максимальную емкость для недогруженного двигателя – это вызывает повышенный нагрев обмоток. В общем, чем-то приходится жертвовать: маленькая ёмкость не даёт двигателю набрать полную мощность, большая ёмкость при недогрузке вызывает повышенный нагрев. Обычно в этом случае я предлагаю такой выход – сделать рабочие конденсаторы из четырёх одинаковых конденсаторов с переключателем или набором переключателей (что будет доступнее). Допустим, мы посчитали ёмкость 40 мкФ. Значит, для работы нам надо использовать 4 конденсатора по 10 мкФ (или три конденсатора 10, 10 и 20 мкФ) и в зависимости от нагрузки использовать 10, 20, 30 или 40 мкФ.

Ещё один момент по пусковым конденсаторам. Конденсаторы для переменного напряжения стоят гораздо дороже конденсаторов для постоянного. Использовать конденсаторы для постоянного напряжения в сетях с переменным, крайне не рекомендуется по причине того, что конденсаторы взрываются. Однако, для двигателей существует специальная серия конденсаторов Starter, предназначенная именно для работы, как пусковые. Использовать конденсаторы серии Starter в качестве рабочих тоже запрещено.

И в завершение нужно отметить такой момент – добиваться идеальных значений нет смысла, поскольку это возможно только, если нагрузка будет стабильной, например, если двигатель будет использоваться в качестве вытяжки. Погрешность в 30-40% это нормально. Другими словами, конденсаторы надо подбирать так, чтобы был запас по мощности в 30-40%.

Что такое звезда и треугольник у электродвигателя

Для начала давайте разберемся, какими бывают схемы подключения обмоток. Известно, что у односкоростного трёхфазного асинхронного электродвигателя есть три обмотки. Они соединяются двумя способами, по схемам:

  • звезда;
  • треугольник.

Такие способы соединения характерны для любых видов трёхфазной нагрузки, а не только для электродвигателей. Ниже изображено, как они выглядят на схеме:

Питающие провода подключаются к клеммной колодке, которая расположена в специальной коробке. Её называют брно или борно. В неё выведены провода от обмоток и закреплены на клеммниках. Сама коробка снимается с корпуса электродвигателя, как и клеммники, расположенные в ней.

В зависимости от конструкции двигателя в брно может быть 3 провода, а может быть и 6 проводов. Если там 3 провода — то обмотки уже соединены по схеме звезды или треугольника и, при необходимости, перекоммутировать их быстро не получится, для этого нужно вскрывать корпус, искать место соединения, разъединять его и делать отводы.

Если в брно 6 проводов, что встречается чаще, то вы можете в зависимости от характеристик двигателя и напряжения питающей сети (об этом читайте далее) соединить обмотки так, как посчитаете нужным. Ниже вы видите брно и клеммники, которые в него устанавливаются. Для 3-проводного варианта в клеммнике будет 3 шпильки, а для 6-проводного — 6 шпилек.

К шпилькам начала и концы обмоток подключаются не просто «как попало» или «как удобно», а в строго определенном порядке, таким образом, чтобы одним набором перемычек вы могли соединить и треугольник, и звезду. То есть начало первой обмотки над концом третьей, начало второй концом первой и начало третьей над концом второй.

Таким образом, если вы установите перемычки на нижние контакты клеммника в линию — получаете соединение обмоток звездой, а установив три перемычки вертикально параллельно друг другу — соединение треугольником. На двигателях «в заводской комплектации» в качестве перемычек используются медные шинки, что удобно использовать для подключения — не нужно гнуть проволочки.

Кстати, на крышках брна электродвигателя часто наносят соответствие расположения перемычек этим схемам.

Как правильно сделать запуск двигателя 380 на 220- Схемы: треугольник-звезда: Пошаговый обзор +Видео

На приусадебных или дачных участках использование электродвигателя не редкое явление, основными характеристиками которого считается его мощность и напряжение сети, от которой он работает. В основном все электрические двигатели осуществляют свою работу от трехфазной сети на 380 Вольт.

Если у вас имеется подведение трех фаз, то здесь проблем не возникнет. А вот как подключить двигатель 380 на 220 В, если однофазное подключение, т. е. подведение 2 проводов — нуля и фазы.

Для решения данного вопроса существуют различные схемы подключения.

Общие сведения

Заметка: При любом вторжении в устройство агрегата, появляется риск снижения качества работы.

Выделяют следующие схемы:

  • звезда-треугольник;
  • с помощью конденсатора.

Как правило, подключение к однофазной сети выполняется с помощью схем звезда или треугольник.

Схема «треугольник»

Наиболее эффективная схема треугольник, т. к. выходная мощность в этом варианте будет отличаться от трехфазного на пятьдесят процентов. Многие отечественные электрические моторы уже имеют схему звезда, вам остается только собрать треугольник, т. е. подключить три фазы и сделать звезду из 6 оставшихся обмоток.

Это соединение отличается максимальной выработкой мощности двигателя. На больших производствах ее используют крайне редко. Потому, что эта схема является сложной и в большом производстве нет необходимости создавать такие трудные соединения. Для введения схемы в работу необходимо будет наличие трех пускателей.

Устройство схемы:
  • 1 пускатель подключают к источнику тока и к статору;
  • К свободным концам статора будут подключаться 2 и 3 пускатель;
  • Обмотки второго пускателя подключают к другим фазам, образовывая треугольник;
  • При подсоединении третьего пускателя к фазе, другие концы следует немного укоротить, тем самым делая схему звезда.

Важно: Не рекомендуется подключать одновременно 3 и 2 пускатели на магнитах, что может создать короткое замыкание и как следствие аварийное отключение автомата.

Для избежания таких ситуаций делают своеобразную электроблокировку. Суть работы которой заключается в том, что когда включается один пускатель, происходит автоматическое выключение второго, то есть размыкание цепи контактов.

Читать еще:  Что такое затяжной пуск двигателя
Принцип работы
  • При запуске 1 пускателя, действием реле времени электрического двигателя включается
  • После этого происходит пуск двигателя по схеме звезда и начинается более мощная работа.
  • Через определенное время отключается 3 пускатель и включается Теперь работа двигателя происходит по схеме треугольник с немного сниженной скоростью.
  • Если необходимо отключить питание, происходит включение 1 пускателя, затем схема периодически повторяется.

Второй тип схемы

Электродвигатель имеет три выходящих провода. К одному подключают фазу питающего провода, ко второму — ноль, а подключение третьего происходит к сети с помощью конденсатора. Направление движения электрического двигателя будет определяться проводом, с которым соединен конденсатор. Для изменения направления вращательного элемента нужно просто изменить подключение проводов.

Третьим показателем считается значение частоты вращения, которое будет равно номинальному. Например, при подключении через трехфазную сеть вращение мотора составляет 1300 об. мин , то при однофазном подключении значение вращения будет аналогичным.

О конденсаторах

Значение конденсатора в сети

Вполне возможно подключить трехфазный асинхронный мотор через однофазную сеть. Движение вала будет производиться, но не с той силой как при трехфазном. В статоре происходит накладывание электромагнитных полей трех обмоток, помимо того, что там происходит вращение магнитного тока. Ими и определяется значение силы и крутящего момента вала.

В штатном режиме подключение через трехфазную сеть может быть осуществлено только одним из вариантов схем, т. е звезда или треугольник. Именно поэтому режим электросети подключенный по схеме треугольник допускает напряжение 380 как номинальное. В случае однофазного его величиной будет 220 вольт. Эта величина будет ниже, чем в схеме треугольник и поэтому считается безопасным для электрического режима. Однако при уменьшении напряжения происходит снижение таких показателей, как электрическая мощность и мощность вала движка.

Так одна из обмоток должна подсоединяться напрямую к электрической сети. Чтобы от остальных обмоток была максимальная отдача, их нужно использовать совмещенно при подключении с использованием конденсатора, который образует сдвиги фазы напряжения на них. И как результат мы получаем подключение как по схеме треугольник, но с однофазной цепью.

Также здесь не маленькое значение будет играть значение емкости конденсатора, т. к. им создается перемещение магнитного поля для вращения ротора.

На заметку: Движек с тремя фазами способен к перемещению максимального магнитного поля до120гр. А с помощью конденсатора перемещение будет не более девяносто градусов.

Так при запускании движка может не хватить емкости конденсатора. Для увеличения пускового момента необходимо увеличить его емкость. Но в процессе возможно, что эта добавленная емкость лишняя и при наименьшем значении работа проходила эффективнее. Поэтому для оптимизации этих показателей лучше использовать 2 теплообменника. Один должен быть постоянно подключен к сети, а второй подсоединяется тогда, когда электрический двигатель запускается.

Еще одна особенность конденсатора при подключении к трехфазной сети это его отношение к обмоткам, фазному и нулевому проводам. Его можно подключить или к нулевой фазе и обмотке или к фазе и обмотке. В зависимости от того, какое подключение было использовано, зависит в какую сторону вращается ротор. Так при добавлении в цепь всего одного переключателя, вы можете управлять движением вала.

Такой параметр электросети, как индуктивность, также имеет отношение к фазовому сдвигу. Индуктивность создается другим соотношением показателей напряжения и тока. Однако, если на месте конденсатора будет подключен дроссель. То он будет способствовать значительному уменьшению действия тока в пусковой обмотке, чем создастся слабое магнитное поле обмотками и запуск двигателя не состоится.

Поэтому конденсатор является единственным элементом пригодным для эффективного перемещения магнитных полей статора в двигателе, подключенного к однофазной сети.

Виды конденсаторов

Для подключения электрических агрегатов 380 на 220 Вольт в основном используют следующие бумажного типа конденсаторы с металлическим корпусом — МБГО, КБП, МБГП. Однако все эти виды очень габаритного размера и обладают небольшой емкостью.

Еще существует такой вид, как электролитические конденсаторы. Они имеют совершенно иную схему подключения. Здесь добавлены, усложняющие схему элементы — диоды и резисторы. Если диод выходит из строя, то появляется возможность взрыва конденсатора, т. е. в этот момент им начинается перемещение тока с большой силой.

Есть и третий вид — конденсаторы СВВ. Они бывают круглые и пластинчатые. Обладают высокими качествами, имеют большую емкость, по размеру не большие. Именно этот вид и рекомендуется специалистами использовать при подключении электро-двигателя 380 на 220.

Электронные схемы для подключения двигателей

Поскольку трёхфазные асинхронные электродвигатели довольно широко распространены и имеют определённые преимущества, они очень часто используются на практике. Но, к сожалению, не всегда имеется возможность запитать его от трёхфазного источника. В этом случае поможет небольшая собранная схема.

Как Вы должны знать, у трёхфазного электропитания значение напряжений его фаз относительно друг друга сдвинуты на 120 градусов и напряжение между ними равно 380 В. Если, это представить в замедленном времени, то получится нечто похожее на перетекание максимального значения между этими тремя проводами. Если подключить к таким проводам три катушки и их собрать в треугольник, то будет создаваться вращающееся электромагнитное поле. Блягодаря ему, и работает элеткродвигатель.

В быту наиболее распространённым электропитанием является 220 В. Оно образовано между двумя проводами — фазой и нулём. Если в трёхфазном напряжение «бегало» между тремя проводами, то в однофазное питание такого эффекта не даст. Да и куда девать ещё один контакт от электродвигателя (ведь у асинхронных электродвигателей имеется 3 провода для подключения и плюс ещё земля).

Вы должны помнить из основ электротехники, что конденсаторы умеют делать сдвиг по фазе. Это нам и понадобится в схеме подключения нашего трёхфазного электродвигателя к однофазной сети. Теперь давайте перейдём к самой схеме и посмотрим, как она работает.

Всю схему условно поделим на две части. Первая осуществляет включение и выключение по средствам простой схемы магнитного пускателя. Нажав на кнопку ПУСК, мы замыкаем цепь и пускатель срабатывает, становясь на самоподхват (его контактом, что находится под кнопкой ПУСКА), тем самым подав напряжение на вторую часть схемы. Следовательно, кнопкой СТОП, эта схема выключается. Пр — это предохранитель (с ним будет надёжней).

Вторая часть электрической схемы подключения трехфазного электродвигателя к однофазной сети представлена конденсаторами разгона (С2), работы (С1), шунтирующим резистором (R1 = 470 кОм), переключателем направления вращения и кнопкой разгона. Как мы выяснили, конденсатор C1 служит для создания эффекта трёхфазной сети, а для чего нужен С2 и R1?

У асинхронных двигателей есть один недостаток, это «тяжкий» начальный момент запуска (а в нашем случае ещё и с пониженным напряжением). При определённой нагрузке на валу электродвигателя, просто подав на него напряжение, у него не хватит сил для разгона (будет гудеть и нагреваться). Для того чтобы избежать подобного явления и был введён ещё один конденсатор (С2) задача которого вывести электродвигатель на нормальный режим работы.

Разгон нужен в течение небольшого промежутка времени (около 4-8 сек). Для упрощения и удобства была запараллелена кнопка «разгона» с кнопкой «ПУСК» (понадобится спаренная кнопка). Для включения схемы необходимо нажать ПУСК и подержать его до тех пор, пока электродвигатель наберёт нужные обороты. Так как емкости оставляют некоторый заряд на себе после снятия напряжения, что может поразить Вас, был введён резистор R1, задача которого разряд С2. С1 разрядится через обмотку двигателя.

И последнее, что можно сказать, это о возможности менять направление вращение нашего электродвигателя. Если знаете или помните, то для изменения направления вращения трёхфазного электродвигателя требуется всего лишь поменять два провода местами. В нашей схеме подключения трёхфазного электродвигателя к однофазной сети нужно перебросить только контакт конденсатора на второй питающий провод. Для этого в схеме стоит переключатель (Направление).

На этом и завершу статью: схема подключения электродвигателя (3 фазный) к однофазной сети.

Ссылка на основную публикацию
Adblock
detector