Bmw-rumyancevo.ru

БМВ Мастер — Автожурнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое магнитный двигатель и как его сделать своими руками

Что такое магнитный двигатель и как его сделать своими руками?

Сотни лет человечество пытается создать двигатель, который будет работать вечно. Сейчас этот вопрос, стоит особенно актуально, когда планета неминуемо движется к энергетическому кризису. Конечно, он может никогда и не наступить, но независимо от этого, люди все-таки нуждаются в том, чтобы отойти от привычных источников энергии и магнитный двигатель – отличный вариант.

Что такое магнитный двигатель

Все вечные двигатели можно разделить на 2 вида:

  1. Первые;
  2. Вторые.

Что касается первых, они представляют собой по большей мере плод фантазий писателей фантастов, но вторые – вполне реальные. Первый вид подобных двигателей извлекает энергию из пустого места, но второй, получает ее из магнитного поля, ветра, воды, солнца и т.д.

Магнитные поля не только активно изучают, но и пытаются использовать их в качестве «топлива» для вечного силового агрегата. Причем многие из ученых разных эпох добивались значительных успехов. Среди известных фамилий, можно отметить следующие:

  • Николай Лазарев;
  • Майк Брэди;
  • Говард Джонсон;
  • Кохеи Минато;
  • Никола Тесла.

Особенное внимание уделялось именно постоянным магнитам, которые могут восстанавливать энергию в прямом смысле из воздуха (мирового эфира). Несмотря на то, что каких-то полноценных объяснений природы постоянных магнитов на данный момент нет, человечество двигается в правильном направлении.

На данный момент, есть несколько вариантов линейных силовых агрегатов, что имеют отличия по своей технологии и схеме сборки, но работают на основе одинаковых принципов:

  1. Работают благодаря энергии магнитных полей.
  2. Импульсного действия с возможностью контроля и дополнительного источника питания.
  3. Технологии, которые совмещают в себе принципы обоих силовых агрегатов.

Общее устройство и принцип работы

Двигатели на магнитах, не похожи на привычные электрические, в которых вращение происходит благодаря электрическому току. Первый вариант будет работать только благодаря постоянной энергии магнитов и имеет 3 главные части:

  • ротор с постоянным магнитом;
  • статор с электрическим магнитом;
  • двигатель.

На один вал с силовым агрегатом монтируется генератор электромеханического типа. Статический электромагнит, сделан в виде кольцевого магнитопровода с вырезанным сегментом или дугой. Помимо всего прочего электрический магнит имеет также катушку индуктивности, к которой присоединен электрокоммутатор, благодаря которому поставляется реверсивный ток.

По сути, принцип работы разных магнитных моторов может отличаться исходя из типа моделей. Но в любом случае, основной движущей силой является именно свойство постоянных магнитов. Рассмотреть принцип работы, можно на примере антигравитационного агрегата Лоренца. Суть его работы заключается в 2-х разнозаряженных дисках, которые подсоединяются к источнику питания. Эти диски размещены наполовину в экране полусферической формы. Их начинают активно вращать. Таким образом, магнитное поле без труда выталкивается сверхпроводником.

История возникновения вечного двигателя

Первые упоминания о создании такого устройства возникли в Индии в VII веке, но первые практические пробы его создания возникли в VIII веке в Европе. Естественно, создание такого устройства позволило бы значительно ускорить развитие науки энергетики.

В те времена, такой силовой агрегат смог бы не только поднимать разные грузы, но и крутить мельницы, а также водяные насосы. В XX веке произошло знаменательное открытие, которое дало толчок к созданию силового агрегата – открытие постоянного магнита с последующим изучением его возможностей.

Модель мотора на его основе должна была работать неограниченное количество времени, из-за чего его назвали вечным. Но как бы там ни было, а вечного ничего нет, так как любая часть или деталь может прийти в неисправность, поэтому под словом «вечно» необходимо понимать только то, что он должен работать без перерывов, при этом не подразумевая каких-либо затрат, включая топливо.

Сейчас невозможно точно определить создателя первого вечного механизма, в основе которого, стоят магниты. Естественно, он сильно отличается от современного, но есть некоторые мнения на тот счет, что первые упоминания о силовом агрегате на магнитах, есть в трактате Бхскара Ачарья математика из Индии.

Первые сведения о появления такого устройства в Европе, появились в XIII веке. Информация поступила от Виллара д’Оннекура, выдающегося инженера и архитектора. После своей смерти, изобретатель оставил потомкам свой блокнот, в котором были разные чертежи не только сооружений, но и механизмов для поднятия грузов и собственно первым устройством на магнитах, что отдаленно напоминает вечный двигатель.

Магнитный униполярный двигатель Тесла

Значительных успехов в этой сфере достиг великий ученый, известный множеством открытий – Никола Тесла. Среди ученых, устройство ученого получило несколько иное название – униполярный генератор Тесла.

Стоит отметить, что первые исследования в этой области проводит Фарадей, но несмотря на то, что он создал прототип с похожим принципом работы, как впоследствии Тесла, стабильность и эффективность оставляли желать лучшего. Слово «униполярный», означает что в схеме устройства цилиндровый, дисковый или кольцевой проводник, находится между полюсами постоянного магнита.

Официальный патент представлял следующую схему, в которой имеется конструкция с 2-мя валами, на которых устанавливаются 2 пары магнитов: одна пара создает условно отрицательное поле, а другая пара – положительное. Между этими магнитами располагаются генерирующие проводники (униполярные диски), которые имеют связь между собой с использованием металлической ленты, которая по сути может быть использована не только для вращения диска, но и в качестве проводника.

Тесла известен большим количеством полезных изобретений.

Двигатель Минато

Очередным отличным вариантом такого механизма, в котором энергия магнитов применяется в качестве бесперебойной автономной работы, является двигатель, который уже давно вышел в серию, несмотря на то, что был разработан только 30 лет назад, изобретателем из Японии Кохеи Минато.

Специалисты отмечают высокий уровень бесшумности и вместе с этим, эффективность. Как утверждает его создатель, такой самовращающийся двигатель магнитного типа как этот имеет коэффициент полезного действия, выше 300%.

Конструкция подразумевает ротор в форме колеса или диска, на котором под углом размещаются магниты. При приближении к ним статора с крупным магнитом, колесо начинает движение, которое основывается на попеременным отталкиванием/сближением полюсов. Скорость вращения будет увеличиваться по мере приближения статора к ротору.

Чтобы исключить нежелательных импульсов во время работы колеса, применяются реле стабилизаторы и уменьшают использование тока управляющего электромагнита. Есть в такой схеме и недостатки, в качестве необходимости систематического намагничивания и отсутствию информации по тяге и нагрузочным характеристикам.

Магнитный мотор Говарда Джонсона

Схема этого изобретения от Говарда Джонсона, подразумевает использование энергии, что создается благодаря потоку непарных электронов, которые имеются в магнитах, для создания цепи питания силового агрегата. Схема устройства выглядит, как совокупность большого количества магнитов, особенность расположения которых, определяется исходя из конструктивной особенности.

Магниты располагаются на отдельной пластине, с высоким уровнем магнитной проводимости. Одинаковые полюса располагаются по направлению к ротору. Благодаря этому обеспечивается попеременное отталкивание/притяжение полюсов, а при этом и смещение частей ротора и статора относительно друг друга.

Читать еще:  Что портит двигатель автомобиля

Правильно подобранное расстояние между основными работающими частями, позволяет правильным образом выбирать магнитную концентрацию, благодаря чему удастся выбирать силу взаимодействия.

Генератор Перендева

Генератор Перендева представляет собой очередное удачное взаимодействие магнитных сил. Это изобретение Майка Брэди, которое он даже успел запатентовать и создать компанию «Перендев», до того, как на него открыли уголовное дело.

Статор и ротор выполнены в форме внешнего кольца и диска. Как видно из схемы, предоставленной в патенте, на них по круговой траектории располагают отдельные магниты, четко соблюдая определенный угол по отношению к центральной оси. Благодаря взаимодействию полей магнитов ротора и статора, происходит их вращение. Расчет цепи магнитов сводится к определению угла расхождения.

Синхронный двигатель на постоянных магнитах

Синхронный двигатель на постоянных частотах представляет собой основной вид электродвигателя, где частоты вращения ротора и статора находятся на одинаковом уровне. Классический электромагнитный силовой агрегат имеет обмотки на пластинах, но если сменить конструкцию якоря и вместо катушки установить постоянные магниты, тогда получится достаточно эффективная модель синхронного силового агрегата.

Схема статора имеет классическую компоновку магнитопровода, куда входят обмотка и пластины, где и скапливается магнитное поле электротока. Это поле взаимодействует с постоянным полем ротора, что и создает крутящий момент.

Помимо всего прочего, необходимо учесть, что исходя из конкретного типа схемы, расположение якоря и статора могут быть изменены, так например первый, может быть сделан в виде внешней оболочки. Для активации мотора от тока сети, применяется цепь магнитного пускателя и теплового защитного реле.

Как собрать двигатель самостоятельно

Не менее популярными являются и самодельные варианты таких устройств. Они достаточно часто встречаются на просторах интернета не только в качестве рабочих схем, но и конкретно выполненных и работающих агрегатов.

Один из самых простых в создании в домашних условиях устройств, создается с использованием 3 соединенных между собой валов, которые скреплены таким методом, чтобы центральный, был повернут на те, что находятся по сторонам.

В центр того вала, что посередине, прикрепляется диск из люцита, диаметром в 4 дюйма, а толщиной в 0,5 дюймов. Те валы, которые располагаются по сторонам, также имеют диски на 2 дюйма, на которых располагаются магниты по 4 штуки на каждом, а на центральном вдвое больше – 8 штук.

Ось обязательно должна находиться по отношению валов в параллельной плоскости. Концы возле колес проходят с проблеском в 1 минуту. В случае если начать перемещать колеса, тогда концы магнитной оси начнут синхронизироваться. Чтобы придать ускорения, необходимо поставить в основание устройства брусок из алюминия. Один его конец должен немного касаться магнитных деталей. Как только усовершенствовать конструкцию таким образом, агрегат будет вращаться быстрее, на пол оборота в 1 секунду.

Электромагнитный реактивный ускоритель

Электромагнитный ускоритель с изменяемым удельным импульсом (англ. Variable Specific Impulse Magnetoplasma Rocket; VASIMR ) — перспективный электромагнитный плазменный ракетный двигатель, предназначенный для реактивного ускорения космического аппарата в открытом космосе.

Конструктивно двигатель схож с ионным двигателем, но призван решить главный его недостаток — быстрое разрушение электродов в потоке плазмы. Цель разработки VASIMR — заполнить разрыв между высокоэффективными реактивными системами малой тяги с высоким удельным импульсом (ионные и тп.) и низкоэффективными системами большой тяги с низким удельным импульсом. VASIMR способен работать в режимах, близких к системам большой тяги и малой.

Способ нагрева плазмы, используемый в VASIMR, был разработан в результате исследований в области термоядерного синтеза. Сама концепция двигателя была предложена астронавтом и учёным Франклином Чанг-Диазом в 1979 году и продолжает развиваться в настоящее время.

Содержание

  • 1 Описание
    • 1.1 Эффективность
  • 2 Применение
    • 2.1 Космический буксир: орбитальный транспортный корабль
    • 2.2 Полёт к Марсу
  • 3 Основной проект
  • 4 См. также
  • 5 Ссылки
  • 6 Примечания

Описание [ править | править код ]

VASIMR, иногда рассматриваемый как электротепловой плазменный ускоритель (ЭПУ), использует радиоволны для ионизации рабочего тела с последующим разгоном полученной плазмы с помощью электромагнитного поля, для получения тяги.

Этот тип двигателя можно рассматривать как разновидность безэлектродного плазменного двигателя, отличающегося в способе ускорения плазмы; оба типа двигателя не имеют никаких электродов. Основное преимущество такого проекта состоит в исключении эрозии электродов. Более того, так как все части VASIMR защищены магнитным полем и не приходят в прямой контакт с плазмой, потенциальная продолжительность эксплуатации двигателя, построенного по такому проекту, гораздо выше ионного двигателя.

Изменяя количество энергии на радиоволновый разогрев и количество рабочего тела, из которого создаётся плазма, VASIMR способен как производить малую тягу с высоким удельным импульсом, так и относительно высокую тягу с низким удельным импульсом.

В отличие от обычных циклотронно-резонансных нагревающих процессов, ионы в VASIMR сразу же проходят через магнитное сопло быстрее времени, необходимого для достижения термодинамического равновесия. Согласно теоретической работе 2004 года Арефьева и Брейзмана из Техасского университета в Остине, практически вся энергия в ионной циклотронной волне будет равномерно распределена в ионизированной плазме за один проход в циклотронном абсорбционном процессе. Это позволяет ионам покинуть магнитное сопло с очень узким распределением энергии, что даёт упрощённое и более плотное распределение магнитов в двигателе [1] .

Эффективность [ править | править код ]

Текущие VASIMR должны обладать удельными импульсами в диапазоне от 3000 до 30 000 секунд (скорости истечения от 30 до 300 км/с). Нижний предел этого диапазона сопоставим с некоторыми существующими концепциями ионных двигателей. Регулируя получение плазмы и нагрев, в двигателе VASIMR можно управлять удельным импульсом и тягой. Двигатель также способен использовать гораздо более высокие уровни энергии (мегаватты) по сравнению с существующими концепциями ионных двигателей. Поэтому VASIMR может обеспечить в десятки раз большую тягу, при условии наличия подходящего источника энергии.

Применение [ править | править код ]

VASIMR не подходит для подъёма полезной нагрузки с поверхности планеты (например, Земли) на околопланетную орбиту, из-за его низкого соотношения тяги к массе и может быть использован только в невесомости (например, для старта корабля с околопланетной орбиты). Он может быть использован в качестве последней ступени, уменьшая потребность в топливе для транспортировки в космосе, или в качестве разгонного блока.

  • компенсация торможения в верхней атмосфере Земли (подъём орбиты) для орбитальных станций;
  • обеспечение доставки грузов на лунную орбиту;
  • заправка топливом в космосе;
  • добыча ресурсов в космосе;
  • космические полёты со сверхвысокими скоростями для дальних исследовательских программ

— ожидается, что этот двигатель должен выполнять эти операции за доли стоимости от стоимости аналогов на основе технологий химического реактивного движения/

Читать еще:  Что такое дополнительный подогрев двигателя

Другие применения VASIMR (например, доставка людей к Марсу) требуют наличия источников очень высоких энергий с небольшой массой, таких как, например, ядерные энергоблоки.

В августе 2008 года Тим Гловер, директор по развитию фирмы «Ad Astra», заявил, что первым ожидаемым применением двигателя VASIMR является «заброс грузов (не людей) с низкой околоземной орбиты на низкую лунную орбиту» и будет предназначено для поддержки программы НАСА возвращения на Луну [2] .

Космический буксир: орбитальный транспортный корабль [ править | править код ]

Наиболее важным в обозримом будущем применением космических аппаратов с двигателями VASIMR является перевозка грузов (особенно межпланетная). Многочисленные исследования показали, что космический корабль с маршевыми двигателями VASIMR будет более эффективным при движении в космосе по сравнению с кораблями с обычными химическими ракетными двигателями. Космический буксир, ускоряемый одним VF-200, был бы способен переместить 7 т груза с низкой земной орбиты на низкую лунную орбиту примерно за шесть месяцев полёта.

НАСА планирует перемещение 34 т полезного груза от Земли до Луны. Для того, чтобы совершить такое путешествие, должно быть сожжено около 60 тонн кислород/водород. Сопоставимый космический буксир требовал бы 5 двигателей VF-200, потребляющих 1 МВт электроэнергии, получаемой от солнечных батарей или от ядерного реактора. Для того, чтобы проделать такую же работу, подобный буксир потратил бы только 8 тонн аргона. Время полёта буксира может быть сокращено за счёт полёта с меньшим грузом или используя большее количество аргона в двигателях при меньшем удельном импульсе (большем расходе рабочего тела). Например, пустой буксир при возвращении к Земле должен покрывать это расстояние за 23 дня при оптимальном удельном импульсе 5000 с или за 14 дней при удельном импульсе 3000 с.

Полёт к Марсу [ править | править код ]

В 2015 году компания Ad Astra Rocket выиграла 10-миллионный тендер на постройку двигателя VASIMR, способного доставить экспедицию на Марс менее чем за 40 дней [3] . Предполагалось, что 200-мегаваттный двигатель класса VASIMR сможет осуществлять полёты с доставкой людей к Марсу всего за 39 дней, по сравнению с шестью месяцами, которые требуются космическим аппаратам с обычными ракетными двигателями [4] .

Основной проект [ править | править код ]

Основным разработчиком VASIMR является « Ad Astra Rocket Company [en] » в Техасе. Разрабатываемый проект включает в себя три части:

  • превращение газа в плазму с использованием радиоволновых антенн;
  • возбуждение плазмы с помощью дальнейшего нагрева в ускорителе;
  • использование электромагнитов для создания магнитного сопла, которое превращает полученную тепловую энергию плазмы в кинетическую энергию реактивной струи.

Текущее состояние

Впоследствии основные усилия были направлены на улучшение общей эффективности двигателя, путём увеличения уровней используемой энергии. Согласно данным компании, ещё совсем недавно эффективность VASIMR составляла 67 %. Опубликованные данные по двигателю VX-50 говорят о том, что двигатель способен использовать 50 кВт на излучение в радиодиапазоне, обладает КПД 59 %, вычисленное следующим образом: 90 % NA эффективность процесса получения ионов × 65 % NB эффективность процесса ускорения ионов. Модель VX-100, как ожидается, будет иметь общую эффективность 72 %, путём улучшения параметра NB, то есть эффективности ускорения ионов, до 80 % [5] [6] .

Однако имеются дополнительные меньшие потери эффективности, относящиеся к превращению энергии постоянного тока в радиоволновую энергию и потребление энергии сверхпроводящими магнитами (для сравнения: рабочий ионный двигатель NASA HiPEP, обладает общей эффективностью ускорителя 80 %) [7] . Опубликованные данные испытаний двигателя VASIMR модели VX-50 показывают, что он способен производить 0,5 Н тяги. «Ad Astra Rocket Company» планировала проведение испытаний прототипа двигателя VX-200 в начале 2008 г. с мощностью излучения в радиодиапазоне 200 кВт с целью достижения требуемой эффективности, требуемой тяги и удельного импульса.

24 октября 2008 года компания заявила, что генерация плазмы двигателем VX-200 с помощью радиоволн первой ступени или твердотельным высокочастотным излучателем энергии достигла планируемых рабочих показателей. Ключевая технология, твердотельное преобразование энергии постоянного тока в радиоволны, стала крайне эффективной и достигла уровня 98 %. Радиоволновый импульс использует 30 кВт для превращения аргона в плазму, оставшиеся 170 кВт расходуются на разгон и разогрев плазмы в задней части двигателя с помощью ион-циклотронного резонансного разогрева [8] . На основании данных, опубликованных по предыдущим испытаниям VX-100 [9] , можно ожидать, что двигатель VF-200, который должен быть установлен на МКС, будет иметь системную эффективность 60—65 % и уровень тяги 5 Н. Оптимальный удельный импульс предполагается на уровне 5000 с использованием в качестве рабочего тела аргона. Удельная мощность оценивается в 1 кг/кВт, что означает, что масса данной версии VASIMR будет составлять только 300 кг.

Одна из оставшихся проблем — определение соотношения потенциально возможной тяги по отношению к действительному её значению. То есть, будет или нет горячая плазма находиться на расстоянии от двигателя на самом деле. Это подтверждено в 2009 году, когда двигатель VX-200 был установлен и испытан в достаточно большой вакуумной камере [ источник не указан 971 день ] . Другая проблема — управление выделяемой побочной теплотой при работе (60 % эффективности означает около 80 кВт ненужной теплоты), решение которой критически важно для продолжительной работы двигателя VASIMR.

10 декабря 2008 года «Ad Astra Rocket Company» заключила договор с НАСА на определение расположения и испытание полётной версии VASIMR VF-200 на МКС ; его запуск был запланирован на 2015 год [10] . VASIMR-двигатель на МКС будет использоваться в пакетно-монопольном режиме, с периодическими включениями. Так как производство электроэнергии на МКС недостаточно велико, система будет включать в себя набор батарей с достаточно малым потреблением тока для подзарядки, которая позволит двигателю работать в течение 10 мин.; этого будет достаточно для поддержания высоты станции, что исключит необходимость дорогостоящей операции по подъёму станции с использованием химических ракетных двигательных блоков.

7 июля 2009 года сотрудники «Ad Astra Rocket Company» удачно испытали плазменный двигатель на сверхпроводящих магнитах [11] .

В 2016 году компания Ad Astra Rocket сообщила, что КПД двигателя вырастет с 70 до 75 %, если использовать криптон вместо аргона, а тяга двигателя достигнет 2 Н. Ведутся работы по замене старого магнита на сверхпроводящий магнит нового типа, с охлаждением жидким азотом. Остаётся проблема электрического заряда двигателя; при его работе струя выбрасывает заряженные ионы, но оставшиеся электроны заряжают корпус и в наземных условиях невозможно замерить этот эффект зарядки корпуса; пока считается, что этот эффект мал и на всех электрических ракетных двигателях эта проблема была решена во время испытаний.

Лётные испытания на МКС были запланированы на 2016 год (однако, вся доступная электрическая мощность на МКС меньше 200 кВт (хотя станция сегодня обладает самой внушительной площадью солнечных батарей и является самым энергетически мощным объектом человечества в космосе), поэтому в проект МКС-VASIMR включили еще целую дополнительную систему солнечных батарей, которая будет часами накапливать энергию на 15-минутные циклы включений плазменного двигателя. [12]

Читать еще:  Двигатель 220 вольт 2850 оборотов

В августе 2019 года очередной прототип VX-200SS продемонстрировал [ где? ] тягу в 5,4 Н (540 граммов тяги) на мощности 200 кВт и при удельном импульсе в диапазоне от 50 до 300 км/c, на порядок больше ионных двигателей. [12]

Вечный электромагнитный двигатель своими руками

Десятиклассник из Татарстана создал «Почти вечный двигатель»

31 мая 2017

Лучшие умы мира (исследователи из Татарстана — не исключение) работают над созданием вечного двигателя, который позволит устройствам функционировать в режиме нон-стоп и не затрачивать при этом какие-либо энергоресурсы. Тем временем, ученик 10 класса казанской гимназии №7 Искандер Рысаев получил высшую оценку за работу «Почти вечный двигатель» в номинации «Модели перспективных транспортных средств и их узлов» на всероссийском конкурсе молодежных исследовательских и проектных работ «Транспорт будущего». Университет Талантов поговорил с ним о том, как зарождался этот проект и какую работу над ним Искандеру еще предстоит проделать.

— Искандер, расскажи, как у тебя появилась идея этого проекта?

Меня зацепила возможность создания вечного двигателя. Для начала я подумал создать «почти вечный двигатель», имеющий большой ресурс, минимальные потери энергии при работе, а также не использующий для питания ни один энергетический источник на Земле.

— Каким образом работает «почти вечный двигатель»?

Определяясь с устройством экспериментального образца двигателя, я не стал изобретать велосипед и выбрал уже известную и, на мой взгляд, наиболее подходящую для поставленной цели конструкцию — «мендосинский мотор» или бесколлекторный магнитно-левитационный солнечный электродвигатель. Его в 1994 году изобрел американский конструктор и популяризатор науки Ларри Спринг в округе Мендосино штата Калифорния.

Мой двигатель состоит из ротора (подвижная часть) и статора (неподвижная часть).

Солнечная панель преобразует световую энергию в электрическую: когда на нее падает свет, она генерирует ток, который течет по подключенной к панели обмотке и создает вокруг нее электромагнитное поле. Оно, в свою очередь, взаимодействует с магнитным полем постоянного магнита статора. Под действием силы Ампера ротор поворачивается на определенное количество градусов. Благодаря этому наиболее освещенной становится следующая панель, и, следовательно, ток начинает течь по другой обмотке — ротор поворачивается снова. При повороте ротора на 180 градусов происходит переполюсовка, ток в обмотке меняет направление. Описанный выше процесс приводит ротор в непрерывное вращение и повторяется, пока свет падает на панели.

— Кто был твоим наставником и помогал в реализации проекта?

Мой руководитель — Марат Хиалиевич Шабаев, учитель физики в нашей школе. Со сборкой немного помогал папа.

— Твой проект уже завершен или требует доработки?

Идей по доработке проекта много. Основная — убрать боковую опору двигателя, добившись полной левитации ротора — то есть состояния, при котором объект словно парит в воздухе, и трение происходит только о воздух. С существующей конструкцией это невозможно, что и было доказано в ходе работы, поэтому требуется доработка.

— Есть ли спонсоры, которые поддерживают твою проектную работу?

Нет, все исследования я проводил за свой счет. Сторонней поддержки у меня нет.

— Задумываешься ли ты о новых проектах? Что это может быть?

Я хочу провести исследование, но с его предметом пока не определился — ведь для начала нужно усовершенствовать двигатель.

Ирина Коптева,

Медиа Лаборатория Университета Талантов

Его уже открыли и не могут закрыть

Вчера на пресс-конференции в РИА «Новости» группа российских ученых заявила о сенсационном открытии — в ходе их экспериментов из обычного речного песка было получено горючее для вечного двигателя. Об этом говорили вполне серьезно настоящие академики.

Руководитель группы исследователей, директор Волгоградского института материаловедения Российской академии естественных наук и лауреат Ленинской и Государственной премий Валериан Соболев, заявил, что при переплавке обычного кварцевого песка получилось новое вещество, крепче стекла в несколько раз и, главное, способное стать источником энергии. По словам господина Соболева, он и его коллеги открыли «новое знание», которое они назвали «обеднением процесса». «Обеднение подобно электролизу, но исходным веществом в нем является обычный речной песок, а продуктом — монолитные многоэлементные химические соединения типа кварцевого стекла»,— пояснил Валериан Соболев и добавил, что «многоэлементные химические соединения, получаемые в этом процессе, необъяснимы существующими законами химии».
— Вещество содержит упорядоченные структуры, которые излучают изменяющийся во времени магнитный ток,— заявил ученый. По его мнению, материалы, содержащие магнитный заряд, и есть новый, ранее не известный науке источник энергии.
— Наконец-то мы, как когда-то мечтал Менделеев, перестанем топить печь ассигнациями,— развивал свою мысль господин Соболев.— Расходование сырьевых ресурсов, газа и нефти, сократится многократно, что благоприятно скажется на экологии. Уже в ближайшие десятилетия возможен демонтаж плотин на великих реках, и реки, которые призваны выполнять сложную работу по экологическому балансу планеты, заживут своей первозданной жизнью.
Отходами «новой энергетики» будет сверхпрочная, устойчивая в кислотной среде, водонепроницаемая, но пропускающая воздух пленка со сроком годности до 50 лет, по истечении которых ее можно переплавить обратно в речной песок и снова использовать этот песок для извлечения энергии. На реализацию этих заманчивых проектов, по словам господина Соболева, требуется всего $2 млн. «К нам уже обратились с предложениями дать деньги такие компании, как American Electronic Powers, Emerson Electric, Sony, Toshiba, Mitsubishi,— сказал Валериан Соболев.— Инвесторов интересуют автономные бытовые электростанции мощностью 3-4 кВт, которые пополняются энергией из внешних полей Земли. Такие источники питания, которые будут запущены в массовое производство уже через полтора года, сведут на нет всю борьбу сверхдержав за энергоресурсы. Песок-то есть везде, у любой реки».
Профессор Сергей Капица и академик РАН Валерий Рубаков, которые специально приехали, чтобы «посмотреть на это чудо», были настроены, правда, не столь оптимистично. Господин Рубаков прямо сказал журналистам, что «все, что вы здесь только что слышали, либо заблуждение, либо обман». А профессор Капица объяснил, что сначала результаты исследования должны быть опубликованы в специальных научных журналах для их всесторонней проверки специалистами. Впрочем, как сказал Сергей Капица, еще до проверки ясно, что первооткрыватели «нового знания» много энергии из земных полей не наскребут, а энергия гравитационного поля вообще отрицательная.
На выпады коллег господин Соболев заявил, что все необходимые научные публикации появятся в самое в ближайшее время, причем на страницах «лучших научных журналов мира».

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]